Відповідь:
S6 = -2405/9; S6 = 1820/9
Пояснення:
Sn = b1 *(q^n - 1)/(q - 1)
S3 = b1 * (q^3 - 1)/(q - 1)
195 = 135 * (q^3 - 1)/(q - 1)
(q^3 - 1)/(q - 1) = 195/135 = 39/27
(q - 1) * (q^2 + q + 1)/(q - 1) = 13/9
q^2 + q + 1 - 13/9 = 0
q^2 + q - 4/9 = 0
Розв'язуємо квадратне рівняння
D = 1 - 4 * (-4/9) = 25/9
q1 = (-1 - 5/3)/2 = -4/3
q2 = (-1 + 5/3)/2 = 1/3
S6 = 135 * (q^6 - 1)/(q - 1) = 135 * (q^3 - 1)*(q^3 + 1)/(q - 1) = 135 * (q - 1) * (q^2 + q + 1)*(q^3 + 1)/(q - 1) = 135 * (q^2 + q + 1)*(q^3 + 1)
1) S6 = 135 * ((-4/3)^2 - 4/3 + 1)*((-4/3)^3 + 1)
S6 = 135 * (16/9 - 4/3 + 1) * (-64/27 + 1)= 135 * (13/9)*(-37/27) = 5 * 13/9 * (-37) = -2405/9
2) S6 = 135 * ((1/3)^2 + 1/3 + 1)*((1/3)^3 + 1) = 135 * 13/9 * 28/27 = 5 * 13 * 28/9 = 1820/9
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3
Відповідь:
S6 = -2405/9; S6 = 1820/9
Пояснення:
Sn = b1 *(q^n - 1)/(q - 1)
S3 = b1 * (q^3 - 1)/(q - 1)
195 = 135 * (q^3 - 1)/(q - 1)
(q^3 - 1)/(q - 1) = 195/135 = 39/27
(q - 1) * (q^2 + q + 1)/(q - 1) = 13/9
q^2 + q + 1 - 13/9 = 0
q^2 + q - 4/9 = 0
Розв'язуємо квадратне рівняння
D = 1 - 4 * (-4/9) = 25/9
q1 = (-1 - 5/3)/2 = -4/3
q2 = (-1 + 5/3)/2 = 1/3
S6 = 135 * (q^6 - 1)/(q - 1) = 135 * (q^3 - 1)*(q^3 + 1)/(q - 1) = 135 * (q - 1) * (q^2 + q + 1)*(q^3 + 1)/(q - 1) = 135 * (q^2 + q + 1)*(q^3 + 1)
1) S6 = 135 * ((-4/3)^2 - 4/3 + 1)*((-4/3)^3 + 1)
S6 = 135 * (16/9 - 4/3 + 1) * (-64/27 + 1)= 135 * (13/9)*(-37/27) = 5 * 13/9 * (-37) = -2405/9
2) S6 = 135 * ((1/3)^2 + 1/3 + 1)*((1/3)^3 + 1) = 135 * 13/9 * 28/27 = 5 * 13 * 28/9 = 1820/9
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3