Найдите координаты точки пересечения прямых y=-x и y=x-8 №3 а)найдите координаты точек пересечения графика линейного уравнения 2x-5y-10=0 c осями координат б)определите принадлежит ли графику данного уравнения точка м (-одна целая одна вторая; -2,6) №4 а)задайте линейную функцию y=kx формулой, если известно что ее график параллелен прямой 4x+y+7=0 б)определите, возрастает или убывает заданная вами линейная функция №5 при каком значении p решением уравнения: -px+2y+p=0 является пара чисел (-1; 2)
x/x-1 + x²-3/x²-1=1
x²-1 - формула разности квадратов, которая раскалывается: (х-1)(х+1), следовательно первую дробь нужно умножить, для приведения к общему знаменателю, на (х+1), т.к. (х-1) уже есть в знаменателе, надеюсь это понятно
будет: х(х+1)/х²-1 + х²-3/х²-1 = 1
т.к. знаменатель общий, можно записать две дроби как одну: х²+х+х²-3/х²-1 =1
получаем 2х²+х-3/х²-1 = 1
переносим единицу в левую часть, и умножаем на (х²-1)
получаем 2х²+х-3-1(х²-1)/х²-1
2х²+х-3-х²+1/х²-1
отбрасываем знаменатель
получаем: х²+х-2
решаем квадратное уравнение
D=1+8=9
√9=3
x1=-1+3/2=1
x2=-1-3/2=-2
ответ: 1;-2
Составляем систему b3 + b5 = 90 b2 + b4 = -30 Преобразовываем b3 + b3*(q^2) = 90 b2 + b2*(q^2) = -30 Выносим общий член за скобки b3*(1 + q^2) = 90 b2*(1 + q^2) = -30 Делим первое уравнение на второе b3 / b2 = -3 b3 = b2 * -3 b3 = b2 * q, то есть q = -3 Подставляем q во второе уравнение системы b2*(1 + (-3)^2) = -30 b2 * 10 = -30 b2 = -3 Находим b1 b2 = b1 * q b1 = b2 / q b1 = -3 / -3 = 1 Находим сумму 6-ти членов по формуле Sn = b1*(q^n - 1) / (q - 1) S6 = 1*((-3)^6 - 1) / (-3 -1) = 728 / -4 = -182 или S6 = 1-3+9-27+81-243 = -182 Проверка условия 9 + 81 = 90 -3 - 27 = 30 ответ: Сумма первых 6-ти членов равна -182