В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
denispavlov12
denispavlov12
02.10.2021 11:34 •  Алгебра

Найдите множество решений неравенства: а)х²<5
б) х≥2х2
Докажите что при любом значении а верно неравенства
а) 5а²-2а+1>0
б)6а<а²+10

Показать ответ
Ответ:
kvm1
kvm1
23.05.2023 04:58
(1 1 1) (1 1 2)  (1 1 3) (1 1 4) (1 1 5)  (1 1 6) (1 2 1) (1 2 2) (1 2 3) (1 2 4) (1 2 5) (1 2 6)
1 2 1    1 3 2    1 3 3   1 3 4   1 3 5    1 3 6   1 4 1   1 4 2   1 4 3   1 4 4   1 4 5   1 4 6
1 5 1    1 5 2    1 5 3   1 5 4   1 5 5    1 5 6   1 6 1   1 6 2   1 6 3   1 6 4   1 6 5   1 6 6
Цифры означают, например, в первой скобке (1 1 1) при бросании выпали цифры 1 на первом кубике 1 на втором 1 на третьем
Выше показано 36 вариантов но это только для случая когда  на первом кубике будет 1
Так как на кубиках 6 цифр то всего вариантов будет 36*6=216
Сумма очков равная 3 будет только в первом варианте 1+1+1=3
Таким образом вероятность исхода будет равна 1/216 =(приблиз)=0,005
0,0(0 оценок)
Ответ:
Abdueva
Abdueva
07.09.2020 01:42

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота