(1 1 1) (1 1 2) (1 1 3) (1 1 4) (1 1 5) (1 1 6) (1 2 1) (1 2 2) (1 2 3) (1 2 4) (1 2 5) (1 2 6) 1 2 1 1 3 2 1 3 3 1 3 4 1 3 5 1 3 6 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 4 6 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 1 5 6 1 6 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 Цифры означают, например, в первой скобке (1 1 1) при бросании выпали цифры 1 на первом кубике 1 на втором 1 на третьем Выше показано 36 вариантов но это только для случая когда на первом кубике будет 1 Так как на кубиках 6 цифр то всего вариантов будет 36*6=216 Сумма очков равная 3 будет только в первом варианте 1+1+1=3 Таким образом вероятность исхода будет равна 1/216 =(приблиз)=0,005
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1 2 1 1 3 2 1 3 3 1 3 4 1 3 5 1 3 6 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 4 6
1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 1 5 6 1 6 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6
Цифры означают, например, в первой скобке (1 1 1) при бросании выпали цифры 1 на первом кубике 1 на втором 1 на третьем
Выше показано 36 вариантов но это только для случая когда на первом кубике будет 1
Так как на кубиках 6 цифр то всего вариантов будет 36*6=216
Сумма очков равная 3 будет только в первом варианте 1+1+1=3
Таким образом вероятность исхода будет равна 1/216 =(приблиз)=0,005
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.