У выражение: (√6+√3)×√12-2√6×√3
1. Раскроем скобки:
(√6+√3)×√12=√12×√6+√12×√3=√72+√36=√72+6
2. Представим 72 как произведение 36 и 2:
√72+6=√36×2+6=√36×√2+6=6√2+6
3. Разберём подробнее 2√6×√3:
2√6×√3=2×√6×3=2×√18
4. Представим √18 как произведение чисел 9 и 2:
2×√18=2×√9×2=2×√9×√2=2×3√2=6√2
5. Подставим полученные значения (действия 2 и 4):
(√6+√3)×√12-2√6×√3=6√2+6 - 6√2=6
ОТВЕТ: 6
В одно действие:
(√6+√3)×√12 - 2√6×√3=√12×√6+√12×√3 - 2√18=√72+√36 - 2√9×2=√72+6
- 2×3√2= √36×2+6 - 6√2=6√2+6-6√2=6
Объяснение:
где (хо; уо) - центр окружности, R - радиус окружности
А(3;1) и В(-1;3) - точки окружности =>
{ (3-xo)²+(1-yo)²=R²
{ (-1-xo)²+(3-yo)²=R² => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)²
По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2
Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим:
(3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)²
(3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)²
9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo
18-24xo=26-28xo
4xo=8
xo=2
yo=3*2-2=6-2=4
S(2;4) - центр окружности
Находим квадрат радиуса окружности:
R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10
Запишем полученное уравнение окружности:
(x-2)²+(y-4)²=10
У выражение: (√6+√3)×√12-2√6×√3
1. Раскроем скобки:
(√6+√3)×√12=√12×√6+√12×√3=√72+√36=√72+6
2. Представим 72 как произведение 36 и 2:
√72+6=√36×2+6=√36×√2+6=6√2+6
3. Разберём подробнее 2√6×√3:
2√6×√3=2×√6×3=2×√18
4. Представим √18 как произведение чисел 9 и 2:
2×√18=2×√9×2=2×√9×√2=2×3√2=6√2
5. Подставим полученные значения (действия 2 и 4):
(√6+√3)×√12-2√6×√3=6√2+6 - 6√2=6
ОТВЕТ: 6
В одно действие:
(√6+√3)×√12 - 2√6×√3=√12×√6+√12×√3 - 2√18=√72+√36 - 2√9×2=√72+6
- 2×3√2= √36×2+6 - 6√2=6√2+6-6√2=6
Объяснение: