В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Zashas1
Zashas1
26.07.2022 16:18 •  Алгебра

Найдите наибольшее целое решение неравенства f'(x)/(x-4)(x-5)< =0, где f(x)=x^3-12x^2+7

Показать ответ
Ответ:
graulity
graulity
19.05.2020 03:24
Сначала найдем производную
 f '(x)=3x^2 - 24x=3x(x-8);
3x(x-8) / (x-4)(x-5)≤0;
x1=0; x2=4; x3=5; x4=8.Метод интервалов.
Рисуем прямую, отмечаем эти точки по возрастанию,  0 и 8 закрашиваем, 4 и 5 выкалываем (пустые). Проставляем +  -  +  -  +    над интервалами , выбираем те, где минус. У нас получатся 2 интервала [0;4) U(5; 8].
Наибольшим целым решением будет  х =8
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота