В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MrBOPOH
MrBOPOH
31.03.2020 17:15 •  Алгебра

Найдите наибольшее и наименьшее значение функции y=2x+1/x^2 на отрезке [0. 5; 3]

Показать ответ
Ответ:
amishka01
amishka01
08.10.2020 19:08
Y = 2x + 1 / x^2              [0,5; 3]
ОДЗ: х ≠ 0
1) Найдём производную функции:
f '(x) = 2x * x^2 - 4x^2 + 2x / x^4 = - 2x + 2 / x^3
2) Приравняем производую к нулю и решим уравнение:
- 2x + 2 / x^3 = 0
2х + 2 = 0
х = -1 не входит в промежуток [0,5; 3]
3) Теперь возьмём значение функции из отрезка: 0,5 и 3 и подставим эти значения в первоначальную функцию:
у (0,5) = 2 * 0,5 + 1 / 0,5^2 = 2 / 1 = 2
y (3) = 2 * 3 + 1 / 3^2 = 7 / 9
\max_{[0,5; 3]} f(x) = f(0,5) = 2
\min_{[0,5; 3]} f(x) = f(3) = \frac{7}{9}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота