Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
ответ:изи
Объяснение:
1. Длина окружности равна: L = 100 м;
2. Скорость первого тела: X м/сек;
3. Скорость второго тела: Y м/сек;
4. Встреча тел при движении в одну сторону происходит каждые: Td = 20 сек;
5. Разностная скорость тел: Vp = (X - Y) м/сек;
6. При движении в противоположные стороны время встречи: Tb = 4 сек;
7. Суммарная скорость тел: Vc = (X + Y) м/сек;
8. Составляем два уравнения:
Vp = X - Y = L / Td = 100 / 20 = 5 м/сек;
Vc = X + Y = L / Tb = 100 / 4 = 25 м/сек;
9. Складываем и вычитаем уравнения:
2 * X = 5 + 25 = 30;
X = 30 / 2 = 15 м/сек;
2 * Y = 25 - 5 = 20;
Y = 20 / 2 = 10 м/сек.
ответ: скорость первого тела 15 м/сек, второго 10 м/сек.