В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
TheEnder
TheEnder
22.04.2021 12:20 •  Алгебра

Найдите наибольшее значение функции y=(x+3)^2(x-1)+2 на отрезке {-4; -2}

Показать ответ
Ответ:
zizircom
zizircom
24.05.2020 11:49

y=(x+3)^2 * (x-1)+2, такое ведь условие? (х-1) - это множитель, а не степень?

Найдем производную данной функции:

y' = 2(х+3)(х+1) + (х+3)^2 = 2(х^2 + 4x + 3) + x^2 + 6x + 9 = 2x^2 + 8x + 6 + x^2 + 6x + 9 = 3x^2 + 14x + 15.

Приравняем производную к 0:

3x^2 + 14x + 15 = 0;

D = 196 - 12*15 = 16;

х = -3 или х = -1 целая 2/3.

х = -3 - точка максимума.
Найдем значение функции на концах отрезка и в точке х = -3:
у(-3) = (-3+3)^2 * (-3-1) + 2 = 2.

у(-4) = (-4+3)^2 * (-4-1) + 2 = -3.

у(-2) = (-2 + 3)^2 * (-2-1) + 2 = -1.

Значит, наибольшее значение функции на отрезкке [-4; -2] = у(-3) = 2.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота