В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
erkenova0909
erkenova0909
06.01.2022 11:00 •  Алгебра

Найдите наименьшее и наибольшее значение функции y=x^2+8 * модуль(x)+7 на промежутке [-8,-2]

Показать ответ
Ответ:
Alyyya
Alyyya
24.05.2020 10:34

Для х>0 следует рассмотреть функцию y1 = x² + 8x + 7,

Для х<0 следует рассмотреть функцию y2 = x² - 8x + 7,

У нас интервал [-8,-2], следовательно рассматриваем функцию у2.

y2 = x² - 8x + 7 - парабола веточками вверх. вершина параболы (минимальное значение функции) имеет место при х = 8:2 = 4, уmin = 16 - 32 + 7 = -9

Найдём нули этой функции:

x² - 8x + 7 = 0

D = 64 - 28 = 36

√D = 6

х1 = (8 + 6):2 = 7

х2 = (8 - 6):2 = 1

График функции y1 находится левее оси у, т.е. при х<0 только своейнисходящей частью, т.е. у∈(-∞, 0). На интервале [-8,-2] наименьшее значение функции будет при х = -2, т.е. у наим = у(-2) = 4 + 16 + 7 = 27, а наибольшее значение при х = -2, т.е у наиб = у(-8) = 64 + 64 + 7 = 135

ответ: у наим = 27, у наиб = 135

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота