В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DanielFray
DanielFray
12.08.2021 11:10 •  Алгебра

Найдите наименьшее значение функции на [-2;1]
y=-+2

Показать ответ
Ответ:
natazhukova95
natazhukova95
03.04.2021 03:18
Ищется также, как локальные минимумы и максимумы.
1) Находим точки, где производная от функции не определена.
2) Находим точки, где производная от функции равна 0.
3) Вычисляем значения функции во всех этих точках.
4) Сравниваем значения и находим самое большое и самое маленькое.

Примеры:
1) y = |x|. При x < 0 y ' = -1; при x > 0 y ' = 1
При x = 0 производная не определена. y(0) = 0. Это глобальный минимум.
2) y = 18x^4 - 24x^3 - x^2 + 2x + 1
Производная
y ' = 72x^3 - 72x^2 - 2x + 2 = 2(x - 1)(36x^2 - 1) = 2(x - 1)(6x - 1)(6x + 1) = 0
x1 = 1; y(1) = 18 - 24 - 1 + 2 + 1 = -4 - минимум
x2 = -1/6; y(-1/6) = 18/6^4 + 24/6^3 - 1/36 - 2/6 + 1 ~ 0,764
x3 = 1/6; y(1/6) = 18/6^4 - 24/6^3 - 1/36 + 2/6 + 1 ~ 1,2083 - максимум
3) y = x*sin x
Производная
y ' = sin x + x*cos x = 0
Периодическая функция, решения такие:
x ~ -11; -8; -5; -2; 0; 2; 5; 8; 11; ...
Значения:
y(+-11) ~ 2; y(+-8) ~ 1,1; y(+-5) ~ 0,43; y(+-2) ~ 1,8; y(0) = 0
Кажется, здесь глобальных минимума и максимума нет.
Чем больше х по модулю, тем больше у.
0,0(0 оценок)
Ответ:
maryxlenko
maryxlenko
03.04.2021 03:18

Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

\[a{x^2} + bx = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (ax + b) = 0\]

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

\[x = 0;ax + b = 0\]

Второе уравнение — линейное. Решаем его:

\[ax = - b\_\_\_\left| {:a} \right.\]

\[x = - \frac{b}{a}\]

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

\[1){x^2} + 18x = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (x + 18) = 0\]

ДОЛЖНО БЫТЬ ПРАВИЛЬНО

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота