В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
asd149
asd149
13.08.2022 15:50 •  Алгебра

Найдите наименьший корень уравнения x/(x+3)-4/(x+1)=2

Показать ответ
Ответ:
Anastasia14418
Anastasia14418
19.08.2020 13:45
x/(x+3) - 4/(x+1) = 2
x(x+1)/(x+3)(x+1) - 4(x+3) /(x+1)(x+3) = 2
(x(x+1)-4(x+3)) /(x+1)(x+3) = 2
(x²+x-4x-12)/(x+1)(x+3) = 2
(x²-3x-12)/(x²+3x+x+3) = 2
(x²-3x-12)/(x²+4x+3) = 2
(x²-3x-12)/(x²+4x+3) - 2 = 0
(x²-3x-12)/(x²+4x+3) - 2*(x²+4x+3)/(x²+4x+3) = 0
(x²-3x-12)/(x²+4x+3) - (2x²+8x+6)/(x²+4x+3) = 0
(x²-3x-12)-(2x²+8x+6) /(x²+4x+3) = 0
(x²-3x-12-2x²-8x-6)/(x²+4x+3) = 0
(-x²-11x-18)/(x²+4x+3) = 0 |*(x²+4x+3) ОДЗ: (x²+4x+3)≠0
(-x²-11x-18)*(x²+4x+3) = 0

-x²-11x-18=0 |*(-1)
x²+11x+18=0
D=121-72= 49
x1,2 = (-11±7)/2
x1= -2   x2= -9 ⇒ -2 - наименьший корень уравнения 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота