То графиком функции будет являться параболла если в и с отсутствую, значит они равны нулю 1) a > 0. - Ветви параболы y = ax2 направлены вверх; - Ось симметрии - ось OY; - Вершина параболы - т. O (0,0); - Наименьшее значение y = 0 функция y = ax2 принимает при x = 0. Наибольшего значения нет; - Область значений функции y = ax2, т.е. все значения, которые принимаетy - [0; +?); - При 0 < a < 1 парабола y = ax2 получается из параболы y = x2 сжатием к оси OX в 1/a раз; - При a > 1 - растяжением y = x2 от оси OX в a раз. 2) a < 0. - Ветви параболы y = ax2 направлены вниз; - Парабола y = ax2 симметрична относительно оси OY параболе y = -ax2 (-a > 0); - Наибольшее значение y = 0 функция y = ax2 принимает при x = 0. Наименьших значений нет; - Область значений функции y = ax2 - [-?; 0).
если в и с отсутствую, значит они равны нулю
1) a > 0. - Ветви параболы y = ax2 направлены вверх; - Ось симметрии - ось OY; - Вершина параболы - т. O (0,0); - Наименьшее значение y = 0 функция y = ax2 принимает при x = 0. Наибольшего значения нет; - Область значений функции y = ax2, т.е. все значения, которые принимаетy - [0; +?); - При 0 < a < 1 парабола y = ax2 получается из параболы y = x2 сжатием к оси OX в 1/a раз; - При a > 1 - растяжением y = x2 от оси OX в a раз.
2) a < 0. - Ветви параболы y = ax2 направлены вниз; - Парабола y = ax2 симметрична относительно оси OY параболе y = -ax2 (-a > 0); - Наибольшее значение y = 0 функция y = ax2 принимает при x = 0. Наименьших значений нет; - Область значений функции y = ax2 - [-?; 0).
или x₁ = 0 или 2x - 3 = 0 или x - 6 = 0
2x = 3 x₃ = 6
x₂ = 1,5
9x² - 1 = 0
(3x)² - 1² = 0
(3x - 1)(3x + 1) = 0
или 3x - 1 = 0 или 3x + 1 = 0
3x = 1 3x = - 1
x₁ = 1/3 x₂ = - 1/3
x³ - 16x = 0
x(x² - 16) = 0
x(x - 4)(x + 4) = 0
или x₁ = 0 или x - 4 = 0 или x + 4 = 0
x₂ = 4 x₃ = - 4