2; - 11
Объяснение:
x⁴ = (9x - 22)²
x⁴ - (9x - 22)² = 0
(x²)² - (9x - 22)² = 0
Разложим на множители по формуле разности квадратов:
(x² - (9x - 22))(x² + (9x - 22)) = 0
(x² - 9x + 22)(x² + 9x - 22) = 0
Произведение равно нулю, если один из множителей равен нулю.
1) x² - 9x + 22 = 0
D = 81 - 88 = - 7 < 0 - нет корней
2) x² + 9x - 22 = 0
D = 81 + 88 = 169
_______________________________
Думаю, ошибка у Вас была в первом преобразовании, вероятно, вы извлекали корень из левой и правой части и делали это неправильно, надо было так:
И дальше надо было решать уравнение с модулем.
Но разложение на множители исходного уравнения проще.
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
2; - 11
Объяснение:
x⁴ = (9x - 22)²
x⁴ - (9x - 22)² = 0
(x²)² - (9x - 22)² = 0
Разложим на множители по формуле разности квадратов:
(x² - (9x - 22))(x² + (9x - 22)) = 0
(x² - 9x + 22)(x² + 9x - 22) = 0
Произведение равно нулю, если один из множителей равен нулю.
1) x² - 9x + 22 = 0
D = 81 - 88 = - 7 < 0 - нет корней
2) x² + 9x - 22 = 0
D = 81 + 88 = 169
_______________________________
Думаю, ошибка у Вас была в первом преобразовании, вероятно, вы извлекали корень из левой и правой части и делали это неправильно, надо было так:
И дальше надо было решать уравнение с модулем.
Но разложение на множители исходного уравнения проще.
все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)