Если не верите, то вот более строгое доказательство:
Предположим, вариант Б) верный. Тогда (1-√2)² должно быть меньше, чем 0,5, а также больше либо равно, чем 0. Проверим оба эти условия. Итак, сравним (1-√2)² и 0. Т.к. √2 > 1 (т.к. (√2)² = 2 > 1 = 1²), то число 1 - √2 точно не равно нулю, а значит, его квадрат точно больше нуля. Доказали. Теперь осталось доказать, что (1-√2)² меньше, чем 0,5, или что 3 - 2√2 меньше, чем 0,5, то есть:
3 - 2√2 < 0.5 ?
-2√2 < 0.5 - 3 ?
-2√2 < -2.5 ?
2√2 > 2.5 ?
√2 > 1.25 ?
Т.к. (√2)² = 2 > 1.5625 = (1,25)², то и √2 > 1.25, а значит исходное выражение ((1-√2)² < 0.5) - верное, а значит, наше предположение, что ответ Б) - верный, оказалось правильным. Да, действительно (1-√2)² ∈ [0; 0,5)
1)√28-√4*18-√4*12/√36*32+√16*48-√64*7=√28-√72-√48/√1152+√768-√448=-√92/√1472=
-√1/16=-1/4
ответ:-1/4
2)а)(√32-√9*12)*(√4*8+√108)
Сначала выполняем действие в первой скобочке:
√32-√108
Во второй скобочке:
√32+√108
У нас получается:(√32-√108)(√32+√108) =>формула сокращенного умножения=
(√32)^2+√108*√32-√108*√32-(√108)^2=32+√3456-√3456-108
√3456 сокращаются,и остается 32-108=-76
ответ:-76
б)(√4-√7)(√4+√7)=(√4)^2-√7*√4-√4*√7-(√7)^2=4+√28-√28-7=4+√28-√28-7
√28 сокращаются,и остается 4-7=-3
ответ:-3
(1-√2)² = 1 + 2 - 2*1*√2 = 3 - 2√2 ≈ 3 - 2*1,41 = 3 - 2,82 = 0,18 ∈ [0; 0,5)
ответ: Б).
Если не верите, то вот более строгое доказательство:
Предположим, вариант Б) верный. Тогда (1-√2)² должно быть меньше, чем 0,5, а также больше либо равно, чем 0. Проверим оба эти условия. Итак, сравним (1-√2)² и 0. Т.к. √2 > 1 (т.к. (√2)² = 2 > 1 = 1²), то число 1 - √2 точно не равно нулю, а значит, его квадрат точно больше нуля. Доказали. Теперь осталось доказать, что (1-√2)² меньше, чем 0,5, или что 3 - 2√2 меньше, чем 0,5, то есть:
3 - 2√2 < 0.5 ?
-2√2 < 0.5 - 3 ?
-2√2 < -2.5 ?
2√2 > 2.5 ?
√2 > 1.25 ?
Т.к. (√2)² = 2 > 1.5625 = (1,25)², то и √2 > 1.25, а значит исходное выражение ((1-√2)² < 0.5) - верное, а значит, наше предположение, что ответ Б) - верный, оказалось правильным. Да, действительно (1-√2)² ∈ [0; 0,5)