Дано: S=132 км S(плота)=60 км v(теч.)=v(плота)=5 км/час Найти: v(собств. лодки)=? км/час РЕШЕНИЕ 1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=5 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=60÷5=12 (часов). 2) Лодка отправилась на 1 час позже, значит она была в пути 12-1=11 часов. Лодка проплыла между пристанями А и В 132 км, и вернулась обратно от пристани В к А, проплыв ещё 132 км. Пуст х - собственная скорость лодки. По течению моторная лодка плыла со скоростью: v(по теч.)=v(собств.) + v(теч.)=х+5 км/час Против течения моторная лодка плыла со скоростью: v(пр. теч.)=v(собств.) - v(теч.)=х-5 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=132/(х+5) часа Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=132/(х-5) часа. Всего на путь туда и обратно ушло 11 часов. Составим и решим уравнение: 132/(х+5)+132/(х-5)=11 (умножим на (х-5)(х+5), чтобы избавиться от дробей)
132×(х-5)(х+5)/(х+5) + 132×(х+5)(х-5)/(х-5)=11(х+5)(х-5) 132(х-5) + 132(х+5)=11(х²-25) 132х-660+132х+660=11х²-275 264х=11х²-275 11х²-264х-275=0 D=b²-4ac=(-264)²+4×11×(-275)=69696+12100=81796 (√D=286) х₁=(-b+√D)/2a=(-(-264)+286)/2×11=550/22=25 (км/час) х₂=(-b-√D)/2a=(-(-264) -286)/2×11=-22/22=-1 (х₂<0 - не подходит) ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 25 км/час.
Дано:
S=132 км
S(плота)=60 км
v(теч.)=v(плота)=5 км/час
Найти:
v(собств. лодки)=? км/час
РЕШЕНИЕ
1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=5 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=60÷5=12 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 12-1=11 часов. Лодка проплыла между пристанями А и В 132 км, и вернулась обратно от пристани В к А, проплыв ещё 132 км.
Пуст х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+5 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-5 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=132/(х+5) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=132/(х-5) часа.
Всего на путь туда и обратно ушло 11 часов.
Составим и решим уравнение:
132/(х+5)+132/(х-5)=11 (умножим на (х-5)(х+5), чтобы избавиться от дробей)
132×(х-5)(х+5)/(х+5) + 132×(х+5)(х-5)/(х-5)=11(х+5)(х-5)
132(х-5) + 132(х+5)=11(х²-25)
132х-660+132х+660=11х²-275
264х=11х²-275
11х²-264х-275=0
D=b²-4ac=(-264)²+4×11×(-275)=69696+12100=81796 (√D=286)
х₁=(-b+√D)/2a=(-(-264)+286)/2×11=550/22=25 (км/час)
х₂=(-b-√D)/2a=(-(-264) -286)/2×11=-22/22=-1 (х₂<0 - не подходит)
ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 25 км/час.
1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.