фнизу
Объяснение:
Выделяем множитель
2
из
4
cos
(
x
)
−
.
Нажмите, чтобы увидеть больше шагов...
1
=
0
Разлагаем на множители.
+
Разделим каждый член в выражении
на
Сократить общий множитель
Делим
Если любой отдельный множитель в левой части уравнения равен
, то и все выражение будет равняться
Приравняем первый множитель к
и решим.
π
n
,
для всех целых
Приравняем следующий множитель к
3
Итоговым решением являются все значения, обращающие
в верное тождество.
Объединяем ответы.
фнизу
Объяснение:
Выделяем множитель
2
из
4
cos
2
(
x
)
−
2
−
2
cos
(
x
)
.
Нажмите, чтобы увидеть больше шагов...
2
(
2
cos
2
(
x
)
−
1
−
cos
(
x
)
)
=
0
Разлагаем на множители.
Нажмите, чтобы увидеть больше шагов...
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
Разделим каждый член в выражении
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
на
2
.
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
2
=
0
2
Сократить общий множитель
2
.
Нажмите, чтобы увидеть больше шагов...
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
2
Делим
0
на
2
.
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
=
0
Если любой отдельный множитель в левой части уравнения равен
0
, то и все выражение будет равняться
0
.
cos
(
x
)
−
1
=
0
2
cos
(
x
)
+
1
=
0
Приравняем первый множитель к
0
и решим.
Нажмите, чтобы увидеть больше шагов...
x
=
2
π
n
,
2
π
+
2
π
n
для всех целых
n
Приравняем следующий множитель к
0
и решим.
Нажмите, чтобы увидеть больше шагов...
x
=
2
π
3
+
2
π
n
,
4
π
3
+
2
π
n
для всех целых
n
Итоговым решением являются все значения, обращающие
2
(
cos
(
x
)
−
1
)
(
2
cos
(
x
)
+
1
)
2
=
0
2
в верное тождество.
x
=
2
π
n
,
2
π
+
2
π
n
,
2
π
3
+
2
π
n
,
4
π
3
+
2
π
n
для всех целых
n
Объединяем ответы.
x
=
2
π
n
3
для всех целых
n
--------------------
решить неравенство lg⁴x-4lg³x+5lg²x -2lgx ≥ 0
--------------
замена t =lgx , где x ∈ (0 ; ∞) →из ООФ lgx.
t⁴ - 4t³+5t² -2t ≥ 0 ⇔t(t³ -4t² +5t -2) ≥ 0 ;
t⁴ - 4t³+4t² +t² -2t ≥ 0 ⇔(t² -2t)² +(t² -2t) ≥ 0 ⇔(t² -2t)(t² -2t+1) ≥ 0
t(t -1)²(t -2) ≥ 0
+ - - +
//////////// [0] ---------[1]-----------[2] ////////////////
t ∈( -∞ ; 0] U {1} U [2 ; ∞)
[ lgx ≤ 0 ; lgx =1 ; lgx ≥ 2 .⇔ x∈(0 ; 1] ∪ {10} ∪ [100 ; ∞) .
ответ: x∈(0 ; 1] ∪ {10} ∪ [100 ; ∞) .
* * * или t⁴ - 4t³+5t² -2t = t(t³ -4t² +5t -2) =t(t-1)²(t-2) * * *
|| числа 1 и 2_делители свободного члена корни многочлена
t³ -4t² +5t -2 , притом 1 двукратный ||