[подчёркнутое число обозначает, что в его записи 100 цифр] Запишем число 333...333 в виде произведения: 333333 = 3* 111111 Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111 1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3. 2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее. Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
Неполным квадратным называется такое уравнение,в котором хотя бы один из коэффициентов, кроме старшего( либо второй, либо свободный член) равен нулю. В нашем уравнении: b= -(a-6); c=(a^2-9). Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает. 1). b=0 a-6=0 a=6 2)c=0 a^2-9=0 a^2=9 a1=-3 ( нам не подходит этот вариант) a2=3 При а =3 уравнение выглядит так: 6x^2+3x=0 При а=6 уравнение выглядит так:9x^2+27=0 ответ: a=3; a=6
Запишем число 333...333 в виде произведения:
333333 = 3* 111111
Множители взаимно простые, значит искомое число Х должно делиться на оба числа: 3 и 111...111
1) Чтоб число Х делилось на 3, количество единичек в нём должно быть кратно 3.
2) Чтоб число Х делилось на 111...111, число Х должно содержать целое число групп по сто единичек: одну, две, три, четыре и так далее.
Наименьшее из чисел, которое удовлетворяет этим двум условиям - это 111111...111111 (300 единичек)
В нашем уравнении: b= -(a-6); c=(a^2-9).
Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает.
1). b=0
a-6=0
a=6
2)c=0
a^2-9=0
a^2=9
a1=-3 ( нам не подходит этот вариант)
a2=3
При а =3 уравнение выглядит так: 6x^2+3x=0
При а=6 уравнение выглядит так:9x^2+27=0
ответ: a=3; a=6