В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
SofStrelets
SofStrelets
24.01.2022 16:35 •  Алгебра

Найдите площадь фигуры, ограниченной графиком функции y=x2(х -в квадрате), осью абсцисс и прямыми х=-1,х=2

Показать ответ
Ответ:
актан9ша
актан9ша
14.06.2020 04:28

В декартовой системе координат графики обоих функций - это параболы, повернутые относительно оси, проходящей через начало координат на угол 90 градосов по часовой стрелке. Но ведь в принципе нам нужна площадь фигуры, поэтому мы можем без проблем поменять местами х и у и у нас получатся более понятные функции: 
y=2x^2+5x+14 
y=x^2-2x+4 
Если Вы вспомните геометрический смысл определенного интеграла - то, надеюсь догадаетесь как это решать. Загляните в учебник и вспомните. 
1. Найдем точки пересечения графиков функций. Для этого приравняем обе функции друг к другу: 
2x^2+5x+14 = x^2-2x+4 
У Вас получилось квадратное уравнение. Решив его Вы найдете абсциссы обоих точек пересечения графиков этих функций: x = a и x = b. 
Дальше Вам надо вычислить интеграл по х от а до b от функции 2x^2+5x+14 и вычесть из него интеграл по х от а до b от функции x^2-2x+4. (Если построите график этих функций то поймете, почему надо вычитать именно из 2x^2+5x+14 а не наоборот). 
Получите величину площади.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота