В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
сашамо
сашамо
28.09.2021 17:35 •  Алгебра

Найдите площадь фигуры ограниченной линиями у=3/х и у=4-х

Показать ответ
Ответ:
trototil
trototil
06.10.2020 05:40
Находим крайние точки фигуры, приравняв функции: 3/х = 4 - х.
Получаем квадратное уравнение х² - 4х + 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-4)^2-4*1*3=16-4*3=16-12=4;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√4-(-4))/(2*1)=(2-(-4))/2=(2+4)/2=6/2=3;x₂=(-√4-(-4))/(2*1)=(-2-(-4))/2=(-2+4)/2=2/2=1.
Тогда площадь S фигуры равна:
S= \int\limits^3_1 {(4-x- \frac{3}{x}) } \, dx =4x- \frac{x^2}{2}-3ln|x||_1^3=4-3ln3 ≈ 0,704163.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота