а). 16а³/5b•35b²/12a⁴= 16a³•35b²/5b•12a⁴=8•7b/6a=4•7b/3a
б). (7m-3)•m³/35m-15= (7m-3)•m³/5(7m-3)=m³/5
в). 6cd/c²-4c•c²-16/18d²=6cd•(c-4)(c+4)/c(c-4)•18d²= 6d(c+4)/18d²= c+4/3d
г). (-5х²/у³)²= 25x⁴/y6
Объяснение:
a). сначала умножаем числитель на числитель и знаменатель на знаменатель; потом упрощаем
б). умножаем разность на числитель (т.к. у этой разности знаменатель 1 и его просто не пишут), в знаменателе можно вынести 5, сокращаем все.
в). в 1 знаменателе можно вынести с, а во втором числители формула
г). степень после скобок относится ко всей дроби, так что возводим в степень 2 и числитель и знаменатель(- при этом уйдет, т.к. степень четная)
а)y`=2x
б)y`=2x-1
в)y`=2x
г)y`=2x
д)y`=10x
е)y`=-2x
ж)y`=10x+3
з)y`=6x-3
и)y`=2ax+b
4.18
а)y`=3x²+2x=1
б)y`=3x²-2x-1
в)y`=15x²
г)y`=-3x²
д)y`=6x²-6x+1
е)y`=3x²-4
ж)y`=-3x²+10x-8
з)3ax²+bx+c
4.20
a)f`(x)=12x²-6x-2
f`(0)=-2
б)f`(x)=-15x²+14x+1
f`(1)=-15+14+1=0
в)f`(x)=-3x²+4
f`(-1)=-3=4=1
г)f`(-2)=48-4-6=38
4.21
а)y`=2x+6
2x+6=0⇒2x=-6⇒x=-3
2x+6<0⇒x<-3⇒x∈(-∞;-3)
2x+6>0⇒x>-3⇒x∈(-3;∞)
б)y`=3x²+6x
3x(x+2)=0⇒x=0 U x=-2
3x(x+2)<0⇒-2<x<0⇒x∈(-2;0)
3x(x=2)>0⇒x<-2 U x>0⇒x∈(-∞;-2) U (0;∞)
в)y`=x²-6x+9=(x-3)²
(x-3)²=0⇒x=3
(x-3)²<0 нет решения
(x-3)²>0⇒x<3 U x>3⇒x∈(-∞;3) U (3;∞)
г)y`=3x²+10x-13
3x²+10x-13=0
D=100+156=256
x=(-10-16)/6=-13/3 U x=(-10+16)/6=1
3x²+10x-13<0⇒x∈(-13/3;1)
3x²+10x-13>0⇒x∈(-∞;-13/3) U (1;∞)
а). 16а³/5b•35b²/12a⁴= 16a³•35b²/5b•12a⁴=8•7b/6a=4•7b/3a
б). (7m-3)•m³/35m-15= (7m-3)•m³/5(7m-3)=m³/5
в). 6cd/c²-4c•c²-16/18d²=6cd•(c-4)(c+4)/c(c-4)•18d²= 6d(c+4)/18d²= c+4/3d
г). (-5х²/у³)²= 25x⁴/y6
Объяснение:
a). сначала умножаем числитель на числитель и знаменатель на знаменатель; потом упрощаем
б). умножаем разность на числитель (т.к. у этой разности знаменатель 1 и его просто не пишут), в знаменателе можно вынести 5, сокращаем все.
в). в 1 знаменателе можно вынести с, а во втором числители формула
г). степень после скобок относится ко всей дроби, так что возводим в степень 2 и числитель и знаменатель(- при этом уйдет, т.к. степень четная)