Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки по оси , ведь для любой точки числовой окружности справедливо, что , т.е. точка имеет координаты .
Если провести прямую, параллельную оси через точку , то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это и .
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она .
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно .
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол , что . Главное здесь то, что может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь .
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а - угол.
Пусть прямая пересекается с окружностью в точках в первой четверти и во второй четверти, а точку на оси мы обзовём . Рассмотрим треугольники и , в них:
- отрезок, лежащий на оси , а - хорда, параллельная оси , значит , по аксиоме о перпендикулярности прямых. Следовательно, треугольники и - прямоугольные по определению. - отрезок, лежащий на радиусе и , значит по свойству радиуса. - общая сторона.
Треугольники и равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол и угол .
Но углы мы отсчитываем от точки , обзовём её . Тогда угол . А это угол первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный . Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами надо добавить , где - целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если - чётное, то формула трансформируется в , если нечётное, то в , ну а . Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Какой формулой пользоваться значения не имеет. На фотографиях представлены решения уравнения .
Если нарисовать числовую окружность, то значение есть координата точки по оси , ведь для любой точки числовой окружности справедливо, что , т.е. точка имеет координаты .
Если провести прямую, параллельную оси через точку , то она пересечётся с числовой окружностью в каких-то точках.
Чтобы было понятнее, советую нарисовать окружность радиусом и центром в точке и отмечать всё, о чём я пишу.
Теперь рассмотрим эти точки пересечения.
Если , то пересечения будут в первой и второй четвертях.
Если , то пересечения будут в третьей и четвёртой четвертях.
Если , то пересечений тоже два и это и .
Если , то пересечение только одно, при чём точка пересечения будет и точкой касания, и равна она .
Если же , то пересечение тоже одно, тоже является точкой касания, но значение равно .
А теперь вспомним определение арксинуса. Арксинусом числа называют такой угол , что . Главное здесь то, что может быть углом только первой четверти.
Отсюда же следует, что .
Это прекрасно работает для , ведь .
Но только недавно мы проверили, что у нас может быть и не одно, а два решения. Как поступить в случае, если арксинус работает только для углов первой четверти, а нам нужно, чтобы он работал во второй? ответ прост. - это число, а - угол.
Пусть прямая пересекается с окружностью в точках в первой четверти и во второй четверти, а точку на оси мы обзовём . Рассмотрим треугольники и , в них:
- отрезок, лежащий на оси , а - хорда, параллельная оси , значит , по аксиоме о перпендикулярности прямых. Следовательно, треугольники и - прямоугольные по определению. - отрезок, лежащий на радиусе и , значит по свойству радиуса. - общая сторона.Треугольники и равны по двум катетам. Из этого следует и то, что их соответственные углы равны. Т.е. угол и угол .
Но углы мы отсчитываем от точки , обзовём её . Тогда угол . А это угол первой четверти.
А угол - искомый угол второй четверти.
Как нам известно, все числа на числовой окружности получаются с поворота на определённый угол, пусть - этот угол. И если мы сделаем полный оборот, то мы хоть и придём в ту же самую точку, но вот число уже будет другое, ведь поворачивались мы на другой угол, равный . Таким образом, чтобы описать все числа, находящиеся в точке на окружности с координатами надо добавить , где - целое (чтобы получились полные обороты).
Вот так и получается первая формула.
Что до второй, то тут всё проще. Выводить её не буду, и так ответ уже километровый. В ней всё работает на чётности . Если - чётное, то формула трансформируется в , если нечётное, то в , ну а . Т.е. это тоже самое, только записанное в одну строчку. Использовать вторую формулу не советую. Она менее интуитивно понятная. Но если в ней разобраться, то решение уменьшается в размере, это правда.
Как-то так. Фу-у-у-ух. Много. Очень Много Букв.
P.S. Прости за задержку.
x² + (m - 1)x + m² - 1,5 = 0
По теореме Виета :
x₁ + x₂ = - (m - 1)
x₁ * x₂ = m² - 1,5
x₁² + x₂² = (x₁ + x₂)² - 2x₁ * x₂ = (- (m - 1))² - 2 * (m² - 1,5) = m² - 2m + 1 - 2m² + 3 = - m² - 2m + 4
Найдём производную полученного выражения :
(- m² - 2m + 4)'= -2m - 2
Приравняем к нулю и найдём нули производной :
- 2m - 2 = 0
m + 1 = 0
m = - 1
Отметим полученное число на числовой прямой и найдём знаки производной на промежутках, на которые разбивается числовая прямая :
+ -
- 1
↑ max ↓
ответ : при m = - 1 сумма корней уравнения наибольшая