Все квадратные неравенства решаются с параболы. Для этого надо найти корни, поставить их на числовой прямой и посмотреть знаки параболы. 1) (х + 2)( х - 4) > 0 x1 = -2 и х2 = 4 -∞ + -2 - 4 + +∞ ответ: х∈(-∞; -2)∨(4; +∞) 2) 5х² +3х <0 x1 = 0, x2 = -0,6 -∞ + - 0, 6 - 0 + +∞ ответ: х∈(-∞; -0,6)∨(0; +∞) 3) х1= -1, х2 = -5/6, х = 2 -∞ - -1 + -5/6 - 2 + +∞ - + + + это знаки (х +1) - - + + это знаки (6х +5) - - - + это знаки (х - 2) Теперь поставим общий знак на числовой прямой и запишем ответ ответ: х∈(-1; -5/6)∨(2; +∞)
У нас 3 модуля
|1| |2| |3|
Нужно пассмотреть все варианты рещеений если |a| = 1) a
2) -a
какие будут варианты
1) |1|=1 |2|=2 |3|=3 корень 1 = 18
2) |1|=1 |2|=2 |3|=-3 2 комплексных корня
3) |1|=1 |2|=-2 |3|=3 корень -54/41
4) |1|=1 |2|=-2 |3|=-3 2 комплексных корня
4) |1|=-1 |2|=2 |3|=3 корень 80/11
6) |1|=-1 |2|=2 |3|=-3 2 комплексных корня
7) |1|=-1 |2|=-2 |3|=3 корень -80/33
8) |1|=-1 |2|=-2 |3|=-3 2 комплексных корня
у НАС ВСЯ числовая прямая разбита на 4 отрезка
(-oo; 0] [0; 3.25] [3.25; 6] [6; +oo]
Первый отрезек соответствует 8) варианту
Второй отрезек соответствует 6) варианту
Третий отрезек соответствует 2) варианту
Четвертый отрезек соответствует 1) варианту
Следовательно мы имеет всего 1 действительный корень = 18
1) (х + 2)( х - 4) > 0
x1 = -2 и х2 = 4
-∞ + -2 - 4 + +∞
ответ: х∈(-∞; -2)∨(4; +∞)
2) 5х² +3х <0
x1 = 0, x2 = -0,6
-∞ + - 0, 6 - 0 + +∞
ответ: х∈(-∞; -0,6)∨(0; +∞)
3) х1= -1, х2 = -5/6, х = 2
-∞ - -1 + -5/6 - 2 + +∞
- + + + это знаки (х +1)
- - + + это знаки (6х +5)
- - - + это знаки (х - 2)
Теперь поставим общий знак на числовой прямой и запишем ответ
ответ: х∈(-1; -5/6)∨(2; +∞)