1) Пооскольку по условию AM = MB(из того, что CM-медиана), а AH = HC = 2, то MH-средняя линия ΔABC. MH = 0.5BC.
2)Рассмотрим ΔABH,<H=90°. AB = 3*2 = 6 - по свойству медианы. AH = 2. По теореме Пифагора, BH = √6² - 2² = √32 = 4√2.
3)рассмотрю ΔHBC,<H = 90°. По теореме Пифагора, BC = √(4√2)² + 4 = √36 = 6.
HM = 0.5 * 6 = 3.
Либо можно было решить чуть проще. Рассмотрим ΔABH,<H = 90°. Мы видим, что раз MH - средняя линия, то AM = MB. Следовательно, в ΔABH HM - медиана. Воспользуюсь особым свойством медианы, проведённо в прямоугольном треугольнике к гипотенузе: она равна половине гипотенузы. Значит, HM = 0.5 * AB = 3. Так решалась эта задача ))
1) Пооскольку по условию AM = MB(из того, что CM-медиана), а AH = HC = 2, то MH-средняя линия ΔABC. MH = 0.5BC.
2)Рассмотрим ΔABH,<H=90°. AB = 3*2 = 6 - по свойству медианы. AH = 2. По теореме Пифагора, BH = √6² - 2² = √32 = 4√2.
3)рассмотрю ΔHBC,<H = 90°. По теореме Пифагора, BC = √(4√2)² + 4 = √36 = 6.
HM = 0.5 * 6 = 3.
Либо можно было решить чуть проще. Рассмотрим ΔABH,<H = 90°. Мы видим, что раз MH - средняя линия, то AM = MB. Следовательно, в ΔABH HM - медиана. Воспользуюсь особым свойством медианы, проведённо в прямоугольном треугольнике к гипотенузе: она равна половине гипотенузы. Значит, HM = 0.5 * AB = 3. Так решалась эта задача ))
3cos²7x+sin7x-1=0 ;
3(1-sin²7x)+sin7x -1=0 ;
3sin²7x -sin7x-2 =0 ; * * * замена t = sin7x * * *
3t² -t -2 =0 ; * * * D =1²-4*3*(-2) =5²
t₁=(1-5)/(2*3) =-2/3 ;
t₂=(1+5)/(2*3) =1.
а)
sin7x = -2/3 ⇒7x =(-1)^(n+1) arcsin(2/3) +πn ;
x =(1/7)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin7x =1⇒7x =π/2 +2πn , n∈Z
x =π/14 +2πn/7, n∈Z .
2)
8-6cos²5x+7sin5x=0 ;
8 -6(1-sin²5x+7sin5x=0 ;
6sin²5x+7sin5x +2 =0
[ sin5x= -2/3 ; sin5x = -1/2.
а)
sin5x = -2/3 ⇒5x =(-1)^(n+1) arcsin(2/3) +πn ,n∈Z ;
x =(1/5)*(-1)^(n+1) arcsin(2/3) +πn/7, n∈Z.
б)
sin5x = -1/2 ⇒5x =(-1)^(n+1)*(π/6) +πn ,n∈Z
x =(-1)^(n+1)*(π/30) +πn/5 ,n∈Z.
3)
5sin2x+9cos2x=0 ;
10sinx*cosx +9(cos²x -sin²x) =0 ;
9sin²x -10sinx*cosx -9cos²x =0 ; || \cos²x ≠0
9tq²x -10tqx -9 =0 ; * * *замена t = tqx * * *
9t² -10t -9 =0 ;* * * D/4 =5² -9*(-9)= 106 * * *
[ tqx =(5-√106)/9 ; tqx =(5+√106)/9 .
x =arctq(5-√106)/9 +πn ,n∈Z или x =arctq(5+√106)/9 +πn ,n∈Z .