Необходимо начертить единичную окружность и заставить точку "бегать" по окружности: 3П - это 1,5 круга, соответствует углу 180 градусам. Точка будет иметь координаты (-1,0). По определению sin и cos это и есть их значения: sin3П=0, cos3П=-1. Аналогично: sin 4п=0, сos4П =1 sin3,5п=1, сos3,5П=0; sin5/2П=1, cos 5/2П=0 sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число (2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д. Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
Составь схему уравнений( их объедини большой скобкой) x^2+y^2=17 5x-3y=17 y^2=17-x^2 5x=17-3y y^2=17-x^2 x=(17-3y)/5 y^2=17-((17-3y)/5)^2 x=(17-3y)/5 Решаем второе уравнение силы: 17-(17-3y):2/25-у:2=0 (425-289+102у+9у^2-25у^2)/25=0 *25 16у^2+102y+136=0 /2 8y^2+51y+68=0 Д=b^2-4ac=51^2-4*8*68=2801-2176=625 y1=(-51+25)/16=-16/16=-1 y2=(-51-25)/16=-76/16=19/4=4.75 Возвращаемся в систему значений x и y( слева объедини квадратной скобкой, а все 3 строчки фигурной скобкой) y1=-1 y2=-4.75 x1=(17+3)/5 x2=(17-3*4.75)/5
Аналогично: sin 4п=0, сos4П =1
sin3,5п=1, сos3,5П=0;
sin5/2П=1, cos 5/2П=0
sinПк=0 сosПк=1 (если к -четное ) и cosПк =-1 если к- нечетное число
(2к+1) - это формула нечетного числа, к примеру 3, 5, 7, 9 и т.д.
Следовательно, sin(2к+1)П=0, cos(2к+1)П =-1..
x^2+y^2=17
5x-3y=17
y^2=17-x^2
5x=17-3y
y^2=17-x^2
x=(17-3y)/5
y^2=17-((17-3y)/5)^2
x=(17-3y)/5
Решаем второе уравнение силы:
17-(17-3y):2/25-у:2=0
(425-289+102у+9у^2-25у^2)/25=0 *25
16у^2+102y+136=0 /2
8y^2+51y+68=0
Д=b^2-4ac=51^2-4*8*68=2801-2176=625
y1=(-51+25)/16=-16/16=-1
y2=(-51-25)/16=-76/16=19/4=4.75
Возвращаемся в систему значений x и y( слева объедини квадратной скобкой, а все 3 строчки фигурной скобкой)
y1=-1
y2=-4.75
x1=(17+3)/5
x2=(17-3*4.75)/5
y1=-1
y2=-4.75
x1=4
x2=0.55