При x < -2 будет |x-1| = 1 - x; |x+2| = -x - 2 y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3 При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1 При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2 y = x - 1 - (x + 2) = x - 1 - x - 2 = -3 Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3 При k >= 0 прямая пересекается в 1 точке. При -2 < k < 0 прямая пересекается с графиком в 3 точках. При k = -2 прямая совпадает с частью графика на промежутке [-2; 1]. При k < -2 прямая опять пересекается с графиком в 1 точке.
2.=3x^4-12x^2+18x
3.=28a^2b+24ab^2+2a^2b-16ab^2=30a^2+8ab^2
2).=12m+20m^2-60m-20m^2=-48m
m=-0.2
-48*(-0.2)=9.6
3).1.=5a(a-4b)
2.=7x^3(1-2x^2)
3.=2ab(3ab-4a+6b)
4).1.x^2-3x=0
x(x-3)=0
x=0 или x-3=0
x=3
2.(x-2)(x+5)=0
x-2=0 или x+5=0
x=2 x=-5
3).(18xy+6x)+(-24y-8)=6x(3y+1)-8(3y+1)=(3y+1)(6x-8)
(3*0,45+1)(6*5/3-8)=2,35*2=4,7
4).1.=3(a-b)+x(a-b)=(a-b)(3+x)
2.=(a+b)^2+(3a+3b)=(a+b)^2+3(a+b)=(a+b)(a+b+3)
3.=(x^8-4X^5)+(X^3-4)=X^5(X^3-4)+(X^3-4)=(x^3-4)(x^5+1)
y = |x-1| - |x+2| = 1 - x - (-x - 2) = 1 - x + x + 2 = 3
При -2 <= x < 1 будет |x+2| = x + 2; |x-1| = 1 - x
y = 1 - x - (x + 2) = 1 - 2x - 2 = -2x - 1
При x >= 1 будет |x-1| = x - 1; |x+2| = x + 2
y = x - 1 - (x + 2) = x - 1 - x - 2 = -3
Получается: при x < -2 y = 3; при -2 <= x < 1 y = -2x - 1; при x >= 1 y = -3
При k >= 0 прямая пересекается в 1 точке.
При -2 < k < 0 прямая пересекается с графиком в 3 точках.
При k = -2 прямая совпадает с частью графика на промежутке [-2; 1].
При k < -2 прямая опять пересекается с графиком в 1 точке.