В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
derakA
derakA
23.08.2021 17:06 •  Алгебра

Найдите сумму наибольшего и наименьшего значений функции на отрезке [-3; 0] решить

Показать ответ
Ответ:
FvitalikA
FvitalikA
24.07.2020 23:52
Через исследование функции на экстремум.
Производную возьмем
y'=3x^2+3x-6
Максимум и минимум функции достигается в точках, где производная равна 0.
3x^2+3x-6=0 \\ x^2+x-2 = 0 \\
по т. Виета x1 = 1; x2 = -2.
Единица в наш отрезок не попадает, значит, либо наибольшее, либо наименьшее значение будет в точке -2.
Подставим -2 в исходное уравнение функции:
y=(-2)^3+1.5*(-2)^2-6*(-2) = -8+1.5*4+12= \\ -8+6+12=10.
В точке 1 значение функции примет минимальное: -3,5, но в наш отрезок эта точка не входит. Можно подставить точку -3, но там функция будет равняться 4,5. Значит, минимальное значение функция примет в точке 0. Функция там будет равняться нулю. Таким образом, сумма наибольшего и наименьшего значений на отрезке будет равняться 10+0=10
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота