Решаем систему уравнений с двумя неизвестными: (1) b2=b1*q=12; (2) b5=b1*q^4=324; (1) b1=12/q; (2) 12/q*q^4=324; 12q^3=324; q^3=324/12; q^3=27; q=3. (1) b1=12/3=4. Сумму первых семи членов геометрической прогрессии находим по формуле: S7=b1(1-q^7)/(1-q)=4(1-3^7)/(1-3)=4(1-2187)/(-2)=4*2186/2=4372. ответ: 4372.
(1) b2=b1*q=12;
(2) b5=b1*q^4=324;
(1) b1=12/q;
(2) 12/q*q^4=324;
12q^3=324;
q^3=324/12;
q^3=27;
q=3.
(1) b1=12/3=4.
Сумму первых семи членов геометрической прогрессии находим по формуле:
S7=b1(1-q^7)/(1-q)=4(1-3^7)/(1-3)=4(1-2187)/(-2)=4*2186/2=4372.
ответ: 4372.