Что бы решить данную систему графически: 1) Мы должны начертить на графике 2 функции по отдельности 2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек. Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах: (0,0) (2,8) Эти координаты и есть решения данной системы.
а) 0.36; б) 0.91; в) 0.55
Объяснение:
а) ровно одно попадание
(первый выстрел удачный, второй и третий нет либо
второй удачный, первый и третий нет либо
третий удачный, первый и второй нет)
0.4*(1-0.5)*(1-0.7)+(1-0.4)*0.5*(1-0.7)+(1-0.4)*(1-0.5)*0.7=
0.4*0.5*0.3+0.6*0.5*0.3+0.6*0.5*0.7=
0.06+0.09+0.21=0.36
б) хотя бы одно попадание
(1 - ни разу не промахнулся)
1-(1-0.4)*(1-0.5)*(1-0.7)=1-0.6*0.5*0.3=1-0.09=0.91
в) ( два выстрела удачный, третий нет, либо
все три удачные)
0.4*0.5*(1-0.7)+(1-0.4)*0.5*0.7+0.4*(1-0.5)*0.7+0.4*0.5*0.7=
0.4*0.5*0.3+0.6*0.5*0.7+0.4*0.5*0.7+0.4*0.5*0.7=
0.06+0.21+0.14+0.14=0.55
(0.91-0.36=0.55)
1) Мы должны начертить на графике 2 функции по отдельности
2) Найти точки/точку пересечения графиков этих функций и определить координату данной\ых точки\точек.
Это координата\координаты и будет решением данной системы.
А теперь давайте решим данную систему графически:
Начертим график функции (во вложении, график параболы)
Теперь начертим график функции ( во вложении, график прямой)
Объединяем 2 графика: (график во вложении)
И видим что 2 графика пересекаются в следующих координатах:
(0,0)
(2,8)
Эти координаты и есть решения данной системы.