8sinxcosx + 3cos²x = 0 cosx(8sinx + 3cosx) = 0 cosx = 0 x = π/2 + πn, n ∈ Z 8sinx = -3cosx tgx= -3/8 x = arctg(-3/8) + πn, n ∈ Z
В отрезок [0; π/2] входит из первого уравнения только π/2. Из второго только ни один корень не подходит: Пусть n = -1. arctg(-3/8) - π. Значение данного выражение < 0 и не входит в заданный промежуток. Пусть n = 0. artg(-3/8). Значение данного выражения < 0 и не входит в заданный промежуток. Пусть n = 1. arctg(-3/8) + π. Значение данного выражения > π/2 и не входит а заданный промежуток.
cosx(8sinx + 3cosx) = 0
cosx = 0
x = π/2 + πn, n ∈ Z
8sinx = -3cosx
tgx= -3/8
x = arctg(-3/8) + πn, n ∈ Z
В отрезок [0; π/2] входит из первого уравнения только π/2.
Из второго только ни один корень не подходит:
Пусть n = -1.
arctg(-3/8) - π.
Значение данного выражение < 0 и не входит в заданный промежуток.
Пусть n = 0.
artg(-3/8).
Значение данного выражения < 0 и не входит в заданный промежуток.
Пусть n = 1.
arctg(-3/8) + π.
Значение данного выражения > π/2 и не входит а заданный промежуток.
ответ: x = π/2.
2.
Знаменатель геометрической прогрессии:
Вычислим теперь восьмой член геометрической прогрессии:
ответ:
3. Дано:
Найти:
Решение:
Вычислим знаменатель геометрической прогрессии:
Сумма первых членов вычисляется по формуле:
Сумма первых -ми членов геометрической прогрессии:
4.
Первый член геометрической прогрессии:
Cумма первых 5-ти членов геометрической прогрессии:
5.
Знаменатель:
Видим, что каждая последовательность умножается на 5. Следовательно, заданная последовательность - геометрическая прогрессия