Щоб знайти похідну функції y = 3sin(x) + 5cos(x), скористаємося правилом диференціювання суми функцій. Похідна кожного окремого доданку буде обраховуватися окремо за правилами диференціювання тригонометричних функцій.
Давайте обчислимо похідну за до цих правил:
dy/dx = d(3sin(x))/dx + d(5cos(x))/dx
Диференціювання sin(x) відносно x дає нам cos(x), а диференціювання cos(x) відносно x дає нам -sin(x).
Тому ми можемо продовжити обчислення:
dy/dx = 3cos(x) - 5sin(x)
Отже, похідна функції у = 3sin(x) + 5cos(x) дорівнює 3cos(x) - 5sin(x).
2.
ΔАВС является равнобедренным треугольником, значит, углы при его основании равны.
∠АСВ=∠АВС=70°
∠DBA - смежный с ∠АВС, значит,
∠DBA = 180° - ∠АВС = 180° - 70° = 110°
ответ: ∠DBA = 110°
3.
Весь треугольник ВСК равнобедренным треугольником, значит, против равных сторон ВК=СК лежат равные углы ∠ВСК=∠КВС=70°.
∠КВС и ∠DBA - вертикальные, поэтому они равны между собой.
∠КВС = ∠DBA = 70°.
ответ: ∠DBA = 70°
4.
Рассмотрим ΔАВD ΔBDC.
У них:
AB = BC - по условию
AD = DC - по условию
BD - общая
Знчит, ΔАВD = ΔBDC по трем сторонам.
Отсюда следует ∠DBA = ∠DBC = 40°
ответ: ∠DBA = 40°
Похідна функції у=3sinx+5cosx
Знайдіть похідну функції у=3sinx+5cosx
Щоб знайти похідну функції y = 3sin(x) + 5cos(x), скористаємося правилом диференціювання суми функцій. Похідна кожного окремого доданку буде обраховуватися окремо за правилами диференціювання тригонометричних функцій.
Давайте обчислимо похідну за до цих правил:
dy/dx = d(3sin(x))/dx + d(5cos(x))/dx
Диференціювання sin(x) відносно x дає нам cos(x), а диференціювання cos(x) відносно x дає нам -sin(x).
Тому ми можемо продовжити обчислення:
dy/dx = 3cos(x) - 5sin(x)
Отже, похідна функції у = 3sin(x) + 5cos(x) дорівнює 3cos(x) - 5sin(x).