В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bitmobru
bitmobru
09.02.2021 08:55 •  Алгебра

Найдите точку максимума функции y=-6x^2/3 +36x^1/2 - 11

Показать ответ
Ответ:
lera14mansurova
lera14mansurova
07.10.2020 15:44
В точке экстремума (максимума или минимума) производная равна 0.
y = -6*x^(2/3) + 36*x^(1/2) - 11
y ' = -6*2/3*x^(-1/3) + 36*1/2*x^(-1/2) = -4/∛x + 18/√x = 0
Делим все на 2
-2/∛x + 9/√x = 0
Приводим к общему знаменателю ∛x*√x
9∛x = 2√x
Возводим все в 6 степень
9^6*x^2 = 2^6*x^3
x = 9^6/2^6 = (9/2)^6 = 4,5^6
y(4,5^6) = -6*(4,5^6)^(2/3) + 36*(4,5^6)^(1/2) - 11 =
= -6*(4,5)^4 + 36*(4,5)^3 - 11 = 809,125
Это и есть максимум.
0,0(0 оценок)
Ответ:
grht1
grht1
07.10.2020 15:44
Решение смотри на фото
Найдите точку максимума функции y=-6x^2/3 +36x^1/2 - 11
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота