3 чел. только спорт, кружок, хор. (по условию)
10-3=7 чел. только кружок и хор.
8-3=5 чел. только кружок и спорт.
6-3=3 чел. только спорт и и хор.
7+5+3= 15 чел только две секции.
20-3-7-5=5 чел. только кружок.
22-3-5-3=11 чел. только спорт.
32-3-7-3=19 чел. только хор.
5+11+19=35 чел. только одна секция.
70-3-15-35=17 чел. ни чем не занимаются.
22 чел. заняты спортом из них 11 только спортом.
ответ: 17 чел. ни чем не занимаются. 22 чел. занимается спортом (по условию) из них 11 занимаются только спортом.
√(2х-1)/(х-2)<1
одз подкоренное выражение больше равно 0
2x-1>=0 x>=0.5
заметим что левая часть отрицательна при x<2
значит одна часть решения есть [0.5, 2)
теперь решаем при x>2 левая и правая части положительны и мы можем возвести их в кавадрат, и это будет равносильно
(2x-1)/(x-2)² < 1²
(2x-1)/(x²-4x+4) - 1 < 0
( (2x-1) - (x²-4x+4)) / (x-2)² < 0 от знаменателя можно избавиться он всегда положителен и не равен 0 так как x>2
2x - 1 - x² + 4x - 4 < 0
-x² + 6x - 5 < 0
x² - 6x + 5 > 0
D=36-20=16 x12=(6+-4)/2 = 1 5
(x-1)(x-5)>0
применяем метод интервалов
(1) (5)
x∈(-∞ 1) U (5 +∞) вспоминаем что x>2 значит x∈(5 + ∞)
объединяем с первой частью решения и получаем
ответ x∈[0.5 2) U (5 +∞)
3 чел. только спорт, кружок, хор. (по условию)
10-3=7 чел. только кружок и хор.
8-3=5 чел. только кружок и спорт.
6-3=3 чел. только спорт и и хор.
7+5+3= 15 чел только две секции.
20-3-7-5=5 чел. только кружок.
22-3-5-3=11 чел. только спорт.
32-3-7-3=19 чел. только хор.
5+11+19=35 чел. только одна секция.
70-3-15-35=17 чел. ни чем не занимаются.
22 чел. заняты спортом из них 11 только спортом.
ответ: 17 чел. ни чем не занимаются. 22 чел. занимается спортом (по условию) из них 11 занимаются только спортом.
√(2х-1)/(х-2)<1
одз подкоренное выражение больше равно 0
2x-1>=0 x>=0.5
заметим что левая часть отрицательна при x<2
значит одна часть решения есть [0.5, 2)
теперь решаем при x>2 левая и правая части положительны и мы можем возвести их в кавадрат, и это будет равносильно
(2x-1)/(x-2)² < 1²
(2x-1)/(x²-4x+4) - 1 < 0
( (2x-1) - (x²-4x+4)) / (x-2)² < 0 от знаменателя можно избавиться он всегда положителен и не равен 0 так как x>2
2x - 1 - x² + 4x - 4 < 0
-x² + 6x - 5 < 0
x² - 6x + 5 > 0
D=36-20=16 x12=(6+-4)/2 = 1 5
(x-1)(x-5)>0
применяем метод интервалов
(1) (5)
x∈(-∞ 1) U (5 +∞) вспоминаем что x>2 значит x∈(5 + ∞)
объединяем с первой частью решения и получаем
ответ x∈[0.5 2) U (5 +∞)