Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
Пусть скорость мотоциклиста х км в мин, скорость велосипедиста у км в мин. До встречи они ехали 26 минут Мотоциклист проехал От А до встречи М - 26 х км, велосипедист от В до встречи М 26 у км После встречи велосипедист ехал расстояние МА, 26 х км со скоростью у км в мин 26х/у минут ехал велосипедист А мотоциклист наоборот, ехал путь от М до В, 26 у км со скоростью х км в мин 26у/х минут По условию время велосипедиста на 39 минут больше 26х/у-39=26у/х получим уравнение 2х²-3ху-2у²=0 Раздели уравнение на у² х/у=z 2z²-3z-2=0 z=2 или z=-1|2 х/у=2 х=2у Велосипедист сначала ехал 26 минут, а потом проехал путь 26х со скоростью у, 26·2у/у=52 минуты Всего 26+52=78 минут ехал велосипедист
Порассуждаем.
Площадь ромба - это половина произведения его диагоналей. Произведение диагоналей вдвое больше: 96*2 = 192.
Диагонали ромба разбивают его площадь на 4 равных прямоугольных треугольника. Возьмём один такой треугольник. Сторона ромба - гипотенуза такого треугольника (стороны ромба равны). Значит, произведение катетов (катеты - половины диагоналей, так как в ромбе точкой пересечения диагонали разбиваются пополам) этого треугольника в 4 раза меньше произведения диагоналей: 192:4 = 48.
По условию, одна диагональ (а значит, и один из катетов нашего треугольника) в 3 раза больше другой. Значит, половина меньшей диагонали равна √48:3 = 4 см, а половина большей - 4*3 = 12 см.
Итак, у нас есть прямоугольный треугольник с катетами 4 см и 12 см, нужно найти его гипотенузу (напомним себе, что искомая гипотенуза есть сторона ромба). Воспользуемся теоремой Пифагора: 4² + 12² = 160, гипотенуза равна квадратному корню из суммы квадратов катетов: √160 = 4√10.
Таким образом, сторона ромба равна 4√10. Ромб - параллелограмм с равными сторонами, следовательно, все стороны ромба равны друг другу и составляют длину в 4√10 см.
ответ: 4√10 см.
До встречи они ехали 26 минут
Мотоциклист проехал От А до встречи М - 26 х км, велосипедист от В до встречи М 26 у км
После встречи велосипедист ехал расстояние МА, 26 х км со скоростью у км в мин
26х/у минут ехал велосипедист
А мотоциклист наоборот, ехал путь от М до В, 26 у км со скоростью х км в мин
26у/х минут
По условию время велосипедиста на 39 минут больше
26х/у-39=26у/х
получим уравнение 2х²-3ху-2у²=0
Раздели уравнение на у²
х/у=z
2z²-3z-2=0
z=2 или z=-1|2
х/у=2 х=2у
Велосипедист сначала ехал 26 минут, а потом проехал путь 26х со скоростью у, 26·2у/у=52 минуты
Всего 26+52=78 минут ехал велосипедист