В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sasha16971
sasha16971
28.11.2021 08:07 •  Алгебра

Найдите все k, при которых прямая y=kx+1 имела бы ровно две общих точки с параболой y=kx^2−(k−3)x+k и при этом не пересекала бы параболу y=(2k−1)x^2−2kx+k+94

Показать ответ
Ответ:
Homoeopath
Homoeopath
05.10.2020 06:34

y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня D>0

kx+1=kx^2−(k−3)x+k

kx^2-(k-3)x+k-kx-1=0

kx^2-(2k-3)x+k-1=0

D=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9>0

8k<9

k<9/8

 

теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней D<0

kx+1=(2k−1)x^2−2kx+k+9/4

(2k−1)x^2−2kx+k+9/4-kx-1=0

(2k−1)x^2−3kx+k+5/4=0

D=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)<0

1<k<5

 

пересекаем k<9/8 и 1<k<5 - ответ 1<k<9/8

 

ответ 1<k<9/8

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота