Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
1) нет х и у то решыть не могу
2) -0,8х-1 0,8х-1 при х=6
(-0,8*6) -1 (0,8*6) -1
-4,8 -1 = -5,8 3,8
-5,8<3,8
3) a) 2x -3y -11x + 8y = 5y - 9x
б) 5(2a+1) -3 = 10a +5-3 =10a +2
в) 14x - (x - 1) + (2x + 6) = 14x - x + 1 + 2x + 6 = 15x + 7
4) нет значени а
5) 1. 2*60=120
2. 200-120=80
3. 80/2=40
6) 3x -(5x - ( 3x -1)
3x - (5x - 3x + 1)
3x - 5x + 3x -1
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
1) нет х и у то решыть не могу
2) -0,8х-1 0,8х-1 при х=6
(-0,8*6) -1 (0,8*6) -1
-4,8 -1 = -5,8 3,8
-5,8<3,8
3) a) 2x -3y -11x + 8y = 5y - 9x
б) 5(2a+1) -3 = 10a +5-3 =10a +2
в) 14x - (x - 1) + (2x + 6) = 14x - x + 1 + 2x + 6 = 15x + 7
4) нет значени а
5) 1. 2*60=120
2. 200-120=80
3. 80/2=40
6) 3x -(5x - ( 3x -1)
3x - (5x - 3x + 1)
3x - 5x + 3x -1