В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Anna2004Shevtsova
Anna2004Shevtsova
06.11.2020 01:33 •  Алгебра

Найдите значение выражения n•x0, где n-количество, а x0-наибольший корень (в градусах) уравнения (tgx - 3ctgx)*√cosx = 0 из промежутка [-90°;180°].

Показать ответ
Ответ:
Ghhhhhiopb
Ghhhhhiopb
29.04.2021 10:14

(tg \, x - 3 \, ctg \, x)\cdot \sqrt{\cos{x}}=0 \\ \\ \cos{x}\geq 0 \\ \\ -\frac{\pi}{2}+2\pi n , \ n \in Z \leq x\leq \frac{\pi}{2}+2 \pi n , \ n \in Z \\ \\ tg \, x =\frac{\sin{x}}{\cos{x}}; \ \ \ \cos{x}\neq 0; \ \ \ x\neq \frac{\pi}{2}+\pi n, \ n\in Z \\ \\ ctg \, x =\frac{\cos{x}}{\sin{x}}; \ \ \sin{x}\neq 0; \ \ \ x\neq \pi n, \ n \in Z

tg \, x - 3 \, ctg \, x =0 \\ \\ -tg \, x \cdot (3\, ctg^2 \, x-1)=0 \\ \\ tg\, x =0; \ \ \ \ 3 \, ctg^2 \, x=1 \\ \\ x_1=\pi n , \ n \in Z; \ \ \ ctg^2 \, x =\frac{1}{3} \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ctg \, x=\pm \frac{\sqrt{3}}{3} \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x_{2,3}=\pm \frac{\pi}{3}+\pi n.\ n\in Z

С учётом ОДЗ:

x=\pm \frac{\pi}{3}+2\pi n, \ n \in Z

\sqrt{\cos{x}}=0 \\ \\ \cos{x}=0 \\ \\ x=\frac{\pi}{2}+\pi n , \ n \in Z, но по ОДЗ x\neq \frac{\pi}{2}+\pi n , \ n\in Z

[-90^o; 180^o] \\ \\ \ [-\frac{\pi}{2}; \pi ]

x_1=-\frac{\pi}{3}+2\pi \cdot 0=-\frac{\pi}{3}=-60^o \\ \\ x_2=\frac{\pi}{3}+2\pi \cdot 0 =\frac{\pi}{3}=60^o

n\cdot x_0 = 2\cdot 60^o=120^o

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота