Взвести одночлен к стандартному виду, указать его степень: 1) 8у²у³у 2)7х*0,1у*2z 3)5b * (-3ab) 4) 5)-3a²*0,2a*(-10b) 6) x³·(y)³·x Решение: Эти одночлены можно упростить, используя переместительный и сочетательный закон умножения и правила действий со степенями. 1) Степень одночлена равна показателю степени у : 6 2)7х·0,1у·2z =7·0,1·2xyz = 1,4xyz Показатель степени x равен 1, показатель у равен 1, показатель z равен 1. Степень одночлена равна сумме этих показателей: 1+1+1=3. 3) 5b * (-3ab) =5*(-3)ab² = -15ab² Показатель степени а равен 1, показатель b равен 2. Степень одночлена равна сумме этих показателей: 1+2=3. 4) Показатель степени m равен 5, показатель n равен 3. Степень одночлена равна сумме этих показателей: 5+3=8. 5) Показатель степени a равен 1, показатель b равен 4. Степень одночлена равна сумме этих показателей: 1+4=5. 6) Показатель степени x равен 4, показатель y равен 1. Степень одночлена равна сумме этих показателей: 4+1=5.
Теорема: Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия MN пересечения этих плоскостей параллельна АВ.
Плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, поэтому проходит вне треугольника, МС=АМ+АС, и МN > AB (см. рисунок)
Примем коэффициент отношения АМ:АС=а.
Тогда АС=5а, АМ=2а, а АМ=5а+2а=7а.
Плоскость параллельна АВ, следовательно, пересекает плоскость, в которой лежит треугольник, по прямой, параллельной АВ.
Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и СN равны. ⇒ ∆ АВС~∆ AMN ( их углы равны).
1) 8у²у³у
2)7х*0,1у*2z
3)5b * (-3ab)
4)
5)-3a²*0,2a*(-10b)
6) x³·(y)³·x
Решение:
Эти одночлены можно упростить, используя переместительный и сочетательный закон умножения и правила действий со степенями.
1)
Степень одночлена равна показателю степени у : 6
2)7х·0,1у·2z =7·0,1·2xyz = 1,4xyz
Показатель степени x равен 1, показатель у равен 1, показатель z равен 1. Степень одночлена равна сумме этих показателей: 1+1+1=3.
3) 5b * (-3ab) =5*(-3)ab² = -15ab²
Показатель степени а равен 1, показатель b равен 2.
Степень одночлена равна сумме этих показателей: 1+2=3.
4)
Показатель степени m равен 5, показатель n равен 3.
Степень одночлена равна сумме этих показателей: 5+3=8.
5)
Показатель степени a равен 1, показатель b равен 4.
Степень одночлена равна сумме этих показателей: 1+4=5.
6)
Показатель степени x равен 4, показатель y равен 1.
Степень одночлена равна сумме этих показателей: 4+1=5.
Теорема: Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
В данном случае плоскость, которой принадлежит ∆ АВС, проходит через АВ, параллельную другой плоскости и пересекает её, поэтому линия MN пересечения этих плоскостей параллельна АВ.
Плоскость, параллельная АВ, пересекает не сами стороны, а продолжения сторон АС и ВС, поэтому проходит вне треугольника, МС=АМ+АС, и МN > AB (см. рисунок)
Примем коэффициент отношения АМ:АС=а.
Тогда АС=5а, АМ=2а, а АМ=5а+2а=7а.
Плоскость параллельна АВ, следовательно, пересекает плоскость, в которой лежит треугольник, по прямой, параллельной АВ.
Соответственные углы при пересечении параллельных прямых АВ и MN секущими АМ и СN равны. ⇒ ∆ АВС~∆ AMN ( их углы равны).
Из подобия следует отношение:
АМ:АС=MN:AB
7a:5a=MN:10⇒
MN=70:5=14 (ед. длины)