Решение: Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет: (а-3)/а Если к числителю прибавим 3, то числитель станет равным: (а-3+3)=а, а к знаменателю прибавим два знаменатель примет значение: (а+2) сама дробь представит в виде: а/(а+2) А так как получившаяся дробь увеличится на 7/40 , составим уравнение: а/(а+2) - (а-3)/а=7/40 Приведём уравнение к общему знаменателю (а+2)*а*40 а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а 40а²- 40*(а²+2а-3а-6)=7*(а²+2а) 40а²-40а²+40а+240=7а²+14а 7а²+14а-40а-240=0 7а²-26а-240=0 а1,2=(26+-D)/2*7 D=√(26²-4*7*-240)=√(676+6720)=√7396=86 а1,2=(26+-86)/14 а1=(26+86)/14=112/14=8 а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи Подставим значение а=8 в дробь (а-3)/а (8-3)/8=5/8
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох. Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет:
(а-3)/а
Если к числителю прибавим 3, то числитель станет равным:
(а-3+3)=а,
а к знаменателю прибавим два знаменатель примет значение:
(а+2)
сама дробь представит в виде:
а/(а+2)
А так как получившаяся дробь увеличится на 7/40 , составим уравнение:
а/(а+2) - (а-3)/а=7/40
Приведём уравнение к общему знаменателю (а+2)*а*40
а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а
40а²- 40*(а²+2а-3а-6)=7*(а²+2а)
40а²-40а²+40а+240=7а²+14а
7а²+14а-40а-240=0
7а²-26а-240=0
а1,2=(26+-D)/2*7
D=√(26²-4*7*-240)=√(676+6720)=√7396=86
а1,2=(26+-86)/14
а1=(26+86)/14=112/14=8
а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи
Подставим значение а=8 в дробь (а-3)/а
(8-3)/8=5/8
ответ: 5/8
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1