Объяснение:
1б)
4ˣ⁺¹+7*2ˣ-2=0
4ˣ *4¹+7*2ˣ-2=0, 2ˣ>0
4*2²ˣ+7*2ˣ-2=0, пусть 2ˣ=а, тогда 4а²+7а-2=0
Д=в²-4ас, Д=7²-4*4*(-2)=81
х₁=(-в+√Д):2а , х₁=(-7+9):8=0,25 ,
х₂=(-в-√Д):2а , х₂=(-7-9):8=-2, не подходит, т.к. 2ˣ>0.
2ˣ=0,25 или 2ˣ=0,5² или х=2
ответ. х=2.
2а) 0,5²ˣ⁻⁴ <0,25
0,5²ˣ⁻⁴ <0,5², т.к. 0< 0,5<1, то знак неравенства меняется,
2х-4>2
2х >6
х >3.
ответ. х >3.
Объяснение:
1б)
4ˣ⁺¹+7*2ˣ-2=0
4ˣ *4¹+7*2ˣ-2=0, 2ˣ>0
4*2²ˣ+7*2ˣ-2=0, пусть 2ˣ=а, тогда 4а²+7а-2=0
Д=в²-4ас, Д=7²-4*4*(-2)=81
х₁=(-в+√Д):2а , х₁=(-7+9):8=0,25 ,
х₂=(-в-√Д):2а , х₂=(-7-9):8=-2, не подходит, т.к. 2ˣ>0.
2ˣ=0,25 или 2ˣ=0,5² или х=2
ответ. х=2.
2а) 0,5²ˣ⁻⁴ <0,25
0,5²ˣ⁻⁴ <0,5², т.к. 0< 0,5<1, то знак неравенства меняется,
2х-4>2
2х >6
х >3.
ответ. х >3.
Решить показательное уравнение.
(2+√3)^(x²-2x+1) + (2-√3)^(x²-2x-1) = 4 / (2-√3) ;
заметим (2+√3)*(2-√3) =2² -(√3)² =4 - 3 = 1.
замена : t =(2+√3)^(x²-2x+1) =(2+√3)^(x-1)² ;
(2-√3)^(x²-2x-1) = (2-√3)^(x²-2x+1-2)= (2-√3)^(x²-2x+1)*(2 -√3)^(-2) = (2-√3)^(x-1)²*(2 -√3)^(-2) =1/ (2+√3)^( (x-1) *(2+√3)² .
получится эквивалентное уравнение
t + (2+√3)² / t = 4(2+√3) ,
t² - 4(2+√3) t +(2+√3)² =0 ; D/4 =(2(2+√3)² ) - (2+√3)² =3(2+√3)²
t₁ =2(2+√3) - (2+√3)√3 =(2+√3)(2 -√3) =1;
t₂= 2(2+√3) + (2+√3)√3 =(2+√3)(2+√3)=(2+√3)²
а)
(2+√3)^(x-1)² =1⇔(x-1)² =0 ⇔x-1 =0 ⇔ x=1 .
б)
(2+√3)^(x-1)²= (2+√3)²⇔(x-1)² =2⇔x-1=±√2 ⇔x =1±√2.
ответ: {1- √2 ; 1 ; 1 + √2 } .
Удачи !