В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
DathVayolet
DathVayolet
01.04.2020 00:15 •  Алгебра

Найти интеграл и указать промежутки монотонности

Показать ответ
Ответ:
leraci2001
leraci2001
28.06.2021 13:28
Областью определения является пересечение областей определения функций корень(2x-1) и корень(2*ax - 4x^2-a)
Из первой функции : 2x-1 >= 0,  x >= 1/2
Выражение 2*ax - 4x^2-a - квадратичная функция, ветви параболы вниз. Тогда, необходимые условия : кв. функция 1) имеет один корень и х >=1/2, или 2) имеет два корня и больший из них равен 1/2
D = (2a)^2 - 16a = 4a(a - 4)
1) D = 0;  4a(a - 4) = 0
1.1) a = 0:   - 4x^2 = 0;  x = 0; не подходит
1.2) a = 4:   8x - 4x^2-4 = 0; (х-1)^2 = 0; x = 1; подходит
2) D > 0; 4a(a - 4) > 0  a Є (-00; 0) U (4; +00)
x1,2 = (-2a +- корень(4a(a - 4)) ) / -8 = (a +- корень(a(a - 4)) ) / 4
x1,2 = 1/2
(a +- корень(a(a - 4)) ) / 4 = 1/2
(+- корень(a(a - 4)) ) ^ 2 = (2 - a) ^ 2
a ^ 2 - 4a = 4 + a ^ 2 - 4a
0 = 4
нет решений

ответ : при а = 4
0,0(0 оценок)
Ответ:
Nactyxa2003
Nactyxa2003
28.06.2021 13:28
\displaystyle y=log_{ \frac{1}{4} }( \sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax)

Основание логарифма больше 0 и не равно 1.
А подлогарифмическое выражение должно быть больше 0.
\begin{cases} \displaystyle x\ \textgreater \ 0\\a\ \textgreater \ 0\\x \neq 1\\a \neq 1\\log_ax\ \textgreater \ 0\rightarrow x\ \textgreater \ 1\quad \quad (\text{if}\,\,\,\,a\in(0;1)\rightarrow \,\,x\ \textless \ 1)\\\sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0 \end{cases}

Разберемся с последним неравенством.
\sqrt{x}log_a5- \sqrt{a}log_a5-x^{ \frac{1}{2}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\\log_a5(\sqrt{x}- \sqrt{a})-x^{ log_x\sqrt{x}+log_x(log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-x^{ log_x(\sqrt{x}log_ax) }+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-\sqrt{x}log_ax+ \sqrt{a}log_ax\ \textgreater \ 0\\\\log_a5(\sqrt{x}- \sqrt{a})-log_ax(\sqrt{x}-\sqrt{a})\ \textgreater \ 0\\\\(\sqrt{x}- \sqrt{a})(log_a5-log_ax)\ \textgreater \ 0

Это неравенство легко решить методом интервалов.
Найдем нули функции: 
\sqrt{x}-\sqrt{a}=0\\\sqrt{x}=\sqrt{a}\\x=a\\\\log_a5-log_ax=0\\log_a5=log_ax\\x=5

Отсюда вытекают 3 случая.
(рассматривать случай при а от 0 до 1 нет смысла, так как область определения в это случае будет в границах от 0 до 1, и 4 целых чисел тут не наберется)
1)\quad a\in (1;5)\\2)\quad a= 5\\3)\quad a\in (5;+\infty)

Первый случай:
a\in(1;5)\\\\\underline{\quad\quad\quad 1 \quad \quad \quad -\quad \quad \quad a \quad + \quad 5 \quad \quad \quad -\quad \quad \quad}
В этом случае при любых значениях а в рассматриваемом промежутке не будет 4 целых чисел в области определения.
\text{ODZ}:\quad x\in (a;5),\,\,\,a\in(1;5)\,\,\,\rightarrow \,\,\,x\in(1;5)\,\,\,\rightarrow\,\,\,2,3,4

Второй случай:
При а = 5 вовсе не будет никакой области определения, так как 
a=5\\(\sqrt{x}- \sqrt{5})(log_55-log_5x)\ \textgreater \ 0\quad \quad\\\\\underline{\quad\quad\quad1\quad\quad\quad-\quad\quad\quad5\quad\quad\quad\quad-\quad\quad\quad\quad}

Третий случай:
a\in(5;+\infty)\\\\\underline{\quad\quad\quad1\quad\quad\quad-\quad\quad\quad5\quad\quad+\quad\quad a\quad\quad\quad\quad-\quad\quad\quad\quad}
В этом случае можно выделить те значения а при которых область определения функции будет содержать ровно 4 целых числа.
\text{ODZ:}\quad x\in(5;a)\quad \rightarrow \quad 6,7,8,9\quad \rightarrow a\in(9;10]

ответ:  \boxed{a\in(9;10]}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота