В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gvg4
gvg4
09.08.2021 13:01 •  Алгебра

Найти модуль и аргумент комплексного числа: a) -1+5i b) cos (п/3)+ i sin ( 3п/4) кто знает

Показать ответ
Ответ:
pak2005
pak2005
06.10.2020 21:10
a)
Модуль комплексного числа z = -1 +5i - это его длина. 
|z| = \sqrt{(-1)^2 + 5^2} = \sqrt{26}
Аргументом комплексного числа называется угол φ (в радианах) между осью абсцисс (Ох) и вектором комплексного числа z. 
Обосзначается как Arg(z). Так как tg(\varphi) = \frac{b}{a} , то
Arg(z) =\varphi =arctg( \frac{b}{a}) = arctg(-5)
б)
\displaystyle z = (cos( \frac{ \pi }{3}) + i*sin( \frac{3 \pi }{4}) \\ \\ \\ |z| = \sqrt{( \frac{1}{2})^2 + (\frac{ \sqrt{2} }{2})^2 } = \frac{ \sqrt{3} }{2} \\ \\ \\ Arg(z) = \varphi = arctg( \frac{sin( \frac{3 \pi }{4}) }{cos( \frac{ \pi }{3}) }) = arctg( \sqrt{2})
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота