В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nazarko200
nazarko200
04.03.2022 22:30 •  Алгебра

Найти наибольшее значение функции f(x)=sin2x-2cosx на промежутке (п; 3п/2)

Показать ответ
Ответ:
натярппо
натярппо
23.05.2020 17:09

f(x)=sin(2x)-2cos(x)

f ' (x)=2cos(2x)+2sin(x)=0

         cos(2x)+sin(x)=0

          (cos^2(x)-sin^2(x))+sin(x)=0

           (1-sin^2(x)-sin^2(x))+sin(x)=0

           -2sin^2(x)+sin(x)+1=0

            2sin^2(x)-sin(x)-1=0

            sin(x)=t

            2t^2-t-1=0

            D=b^2-4ac=1+8=9

            t1,2=(-b±sqrt(D))/2a

             t1=-1/2

             t2=1

          a)  sin(x)=-1/2=> x=7pi/6+pi/n

          б)  sin(x)=1 => x=pi/2+2*pi*n

          подставляя в исходное уравнение  точки x=7*pi/6,pi и 3pi/2

         (точка x=pi/2 - не входит исследуемых промежуток) находим, что максимум функция получает при x=7*pi/6   

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота