В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Arina200531
Arina200531
17.10.2021 20:49 •  Алгебра

Найти наименьшее и наибольшее значение функции.


Найти наименьшее и наибольшее значение функции.

Показать ответ
Ответ:
daniilzagora
daniilzagora
04.09.2021 20:44

Объяснение:

первая производная

\displaystyle y'=\bigg (\frac{1}{x^2-4x+10} \bigg )'=-\frac{1}{(x^2-4x+10)^2} *(2x-4)

приравняем ее к нулю (знаменатель ≠ 0)

-2x+4 = 0  ⇒  x = 2 это точка экстремума и она только одна

y(2) = 1/6

теперь надо определить, это минимум или максимум

для этого возьмем вторую производную

\displaystyle y''=\bigg (\frac{4-2x}{(x^2-4x+10)^2} \bigg )'=\frac{(4-2x)'(x^2-4x+10)^2-(4-2x)\bigg ((x^2-4x+10)^2\bigg )'}{(x^2-4x+10)^4} =

\displaystyle =\frac{-2}{(x^2-4x+10)^2} -\frac{(4-2x)2(x^2-4x+10)(2x-4)}{(x^2-4x+10)^4} =\\\\=\frac{-2}{(x^2-4x+10)^2}-\frac{2(2x-4)^2}{(x^2-4x+10)^3}

y''(2) = -1/18 < 0, значит точка х=2 - это точка максимума

ответ

наибольшее значение функции у(2) = 1/6

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота