В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
двоишник55
двоишник55
29.01.2023 11:21 •  Алгебра

Найти наименьшее значение выражения через производную адски решается аналитика нужна скорее всего

Показать ответ
Ответ:
maryrous
maryrous
05.10.2020 01:56
На координатной плоскости возьмем точки А(1;0), В(0;1) и С((х√3)/2; x/2).
Тогда  BC=√(3x²/4+(1-x/2)²)=√(x²-x+1), AC=√((х√3)/2-1)²+x²/4)=√(x²-х√3+1), AB=√2. Т.к. по неравенству треугольника BC+AC≥AB, то 
√(x²-x+1)+√(x²-х√3+1)≥√2. Равенство здесь достигается при C∈AB, а именно, при х=√3-1. Действительно:
√((√3-1)²-(√3-1)+1)=√(6-3√3)=√3·√(2-√3)=√3·√((√3-1)²/2)=(3-√3)/√2.
√((√3-1)²-√3(√3-1)+1)=√(2-√3)=√((√3-1)²/2)=(√3-1)/√2.
Сумма этих выражений равна √2. Таким образом, после умножения на √2, получим, что минимальное значение равно 2.

P.S. x=√3-1 найдено из соображений, что точка С((х√3)/2; x/2) должна лежать на прямой AB, задаваемой уравнением u+v=1. Т.е. должно выполняться (х√3)/2+x/2=1, откуда x=√3-1.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота