Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
a=-4<0 ⇒ ветви вниз ⇒ самое наибольшее значение y будет получаться при самом наименьшем значении х ⇒ряд по убыванию таков: f(2) , f(5) ,f(8.1) , f(11.8)
№4
найдем нули функции
0=х²-4х+3
D=(-4)²-4×3×1=4
x=(4±√4)÷2= 3 или 1
a=1>0⇒ ветви параболы вверх ⇒ y>0 x∈(-∞;1)∪(3;∞)
y<0 (1;3)
№6
я тебе график не построю но с аргументом
также находим нули функции
0=х²-4
0=(х-2)(х+2) ⇒х=±2
а=1>0 ⇒ ветви параболы вверх ⇒y>0 (-∞;-2)∪(2;∞)
№5
y=-x²+6x-5
найдем ось симметрии m=-b/2a=-6÷(2×(-1))=3
a=-1<0 ⇒ ветви вниз ⇒ функция возрастает (-∞;3)
функция убывает(3;∞)
№7
g(x)=-4x²+16x-3
a=-4<0 ⇒ ветви вниз ⇒ самое наибольшее значение y будет получаться при самом наименьшем значении х ⇒ряд по убыванию таков: f(2) , f(5) ,f(8.1) , f(11.8)