Пусть раствор в первом сосуде имеет x% концентрацию кислоты, а во втором y%. Найдём массу кислоты в обоих сосудах, составив пропорции. 10 кг - 100% z кг - x% z = 10 * x/100 = 0,1x кг в первом сосуде 16 * y/100 = 0,16y кг кислоты во втором сосуде Если слить их вместе, то получится 26 кг раствора с содержанием кислоты 55%. Составим пропорцию и найдём количество кислоты в 10 + 16 кг раствора. 26 кг - 100% z кг - 55% z = 26 * 55/100 = 14,3 кг 0,1x + 0,16y = 14,3 Найдём массу кислоты в 10 литрах раствора, содержащегося во втором сосуде. 0,16y - в 16 кг z кг - в 10 кг z = 0,16y * 10/16 = 0,1y кг Таким образом, если слить равные массы этих растворов (каждого по 10 литров), то полученная масса раствора составит 20 кг, а кислоты в нём будет 0,1x + 0,1y килограммов. 20 кг - это 100% z кг - это 61% z = 20 * 61/100 = 12,2 кг Решим полученную систему уравнений методом сложения, умножив второе уравнение на (- 1) и сложив его с первым. 0,1x + 0,16y = 14,3 0,1x + 0,1y = 12,2 0,1x - 0,1x + 0,16y - 0,1y = 14,3 - 12,2 0,06y = 2,1 y = 2,1 : 0,06 = 35 x = (14,3 - 35 * 0,16) * 10 = 87 Найдём содержание кислоты в первом 87%-ном растворе. 0,1 * 87 = 8,7 кг кислоты ответ: в первом растворе содержится 8,7 килограммов кислоты.
Пусть раствор в первом сосуде имеет x% концентрацию кислоты, а во втором y%. Найдём массу кислоты в обоих сосудах, составив пропорции. 10 кг - 100% z кг - x% z = 10 * x/100 = 0,1x кг в первом сосуде 16 * y/100 = 0,16y кг кислоты во втором сосуде Если слить их вместе, то получится 26 кг раствора с содержанием кислоты 55%. Составим пропорцию и найдём количество кислоты в 10 + 16 кг раствора. 26 кг - 100% z кг - 55% z = 26 * 55/100 = 14,3 кг 0,1x + 0,16y = 14,3 Найдём массу кислоты в 10 литрах раствора, содержащегося во втором сосуде. 0,16y - в 16 кг z кг - в 10 кг z = 0,16y * 10/16 = 0,1y кг Таким образом, если слить равные массы этих растворов (каждого по 10 литров), то полученная масса раствора составит 20 кг, а кислоты в нём будет 0,1x + 0,1y килограммов. 20 кг - это 100% z кг - это 61% z = 20 * 61/100 = 12,2 кг Решим полученную систему уравнений методом сложения, умножив второе уравнение на (- 1) и сложив его с первым. 0,1x + 0,16y = 14,3 0,1x + 0,1y = 12,2 0,1x - 0,1x + 0,16y - 0,1y = 14,3 - 12,2 0,06y = 2,1 y = 2,1 : 0,06 = 35 x = (14,3 - 35 * 0,16) * 10 = 87 Найдём содержание кислоты в первом 87%-ном растворе. 0,1 * 87 = 8,7 кг кислоты ответ: в первом растворе содержится 8,7 килограммов кислоты.
Объяснение:
сердечко )
50-29,75=20,25 (р)-общая сумма,на которую была снидена цена
предположим,что в первый раз сумма скидки составила х(руб), во второй у(руб),всего х+у=20,25
первый раз снизили товар на z%, во второй на 2z%
x=50*z/100=z/2 руб(сумма скидки в первой раз)
50-z/2руб-стоимость товара после первой уценки
у=(50-z)/2*2z/100=z*(100-z)/100 (сумма скидки во второй раз)
подставим найденные х и у в уравнение z/2+z*(100-z)/100=20,25
после приведения подобных получаем уравнение z²-150z+2025=0
находим корни квадратного уравнения и полуяаем z1=15 ;z2=135
отсюда следует что первый раз товар уценили на 15%, второй на 30%
первый раз на 7,5 руб , второй на 12,75 руб ,в сумме на это даёт 20,25 руб т.е после уценки на 20,25руб товар стал стоит 29,75руб