Берем первое выражение x6+x5+2x4+2x3+4x2+4x=0 выносим х в третьей степени за скобки х3(х3+х2+2х+2)=0 х3=0 либо (х3+х2+2х+2)=0 х=0 решим получившиеся уравнение х3+х2+2х+2=0 (далее способом группировки,разбиваем многочлен на множители. (х3+2х) +(х2+2)=0) х(х2+2) + 1(х2+2)=0 (х+1)*(х2+2)=0 х+1=0 либо х2+2=0 х= -1 х2=-2 (решений нет) теперь берем второе выражение 3x4+3x3+6x2+6x=0выносим за скобки 3х3х(х3+х2+2х+2)=03х=0 либо х3+х2+2х+2 =0х=0решим получившиеся уравнение х3+х2+2х+2 =0используя способ группировки,мы разбиваем многочлен на множителих(х2+2)+1(х2+2)=0(х+1)*(х2+2)=0х+1=0 либо х2+2=0х= -1 х2= -2(решений нет)общие корни уравнений : 0 и -1.ответ : 0,-1
Пусть в комнате 1 рыцарь и, соответственно, 99 лжецов. Пусть лжецы выстроены в порядке возрастания роста: z₁, z₂, z₃, ..., z₉₉. Рассмотрим, для каких лжецов какая фраза будет истинной или ложной. <<Не менее 10 лжецов ниже меня>>: Для первых десяти лжецов z₁-z₁₀ эта фраза действительно ложь, так как слева от них стоит меньше 10 человек. Для остальных лжецов слева стоит хотя бы 10 лжецов, и соврать таким образом они не могут. <<Не менее 10 лжецов выше меня>>: Напротив, эта фраза ложна для последних десяти лжецов z₉₀-z₉₉, так как справа от них стоит меньше 10 человек. Для остальных лжецов справа стоит хотя бы 10 лжецов, и, сказав эту фразу, они не соврут. Таким образом, соврать смогли лишь 20 лжецов: первые десять человек и последние десять человек (с наименьшим и наибольшим ростом). Это наибольшее число лжецов, которое может быть в этой ситуации. Именно оно обеспечивает наименьшее число рыцарей, которых будет 100-20=80. ответ: 80
Пусть лжецы выстроены в порядке возрастания роста:
z₁, z₂, z₃, ..., z₉₉.
Рассмотрим, для каких лжецов какая фраза будет истинной или ложной.
<<Не менее 10 лжецов ниже меня>>:
Для первых десяти лжецов z₁-z₁₀ эта фраза действительно ложь, так как слева от них стоит меньше 10 человек. Для остальных лжецов слева стоит хотя бы 10 лжецов, и соврать таким образом они не могут.
<<Не менее 10 лжецов выше меня>>:
Напротив, эта фраза ложна для последних десяти лжецов z₉₀-z₉₉, так как справа от них стоит меньше 10 человек. Для остальных лжецов справа стоит хотя бы 10 лжецов, и, сказав эту фразу, они не соврут.
Таким образом, соврать смогли лишь 20 лжецов: первые десять человек и последние десять человек (с наименьшим и наибольшим ростом). Это наибольшее число лжецов, которое может быть в этой ситуации. Именно оно обеспечивает наименьшее число рыцарей, которых будет 100-20=80.
ответ: 80