В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nastyasiminyuk
nastyasiminyuk
03.12.2021 08:57 •  Алгебра

Найти площадь фигуры, ограниченной параболой y=4-x^2, прямой y=x+2 и осью ox. в упор не сходится с ответом, , .

Показать ответ
Ответ:
meimanby
meimanby
03.10.2020 01:39

y=4-x²

Графиком квадратичной функции является парабола, ветви которого направлены вниз. (0;4) - вершина параболы

y=x+2 - прямая, которая проходит через точки (0;2), (-2;0).

Если на отрезке [a;b] некоторая непрерывная функция f(x)≥g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми x=a, x=b , можно найти по формуле:

S=\int^b_a(f(x)-g(x))dx

Площадь:

S=\int\limits^1_{-2} {(4-x^2-(x+2))} \, dx =\int\limits^1_{-2} {(2-x-x^2)} \, dx =\\ \\=(2x-\frac{x^2}{2} -\frac{x^3}{3} )|^1_{-2}=4.5


Найти площадь фигуры, ограниченной параболой y=4-x^2, прямой y=x+2 и осью ox. в упор не сходится с о
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота