Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.
ответ: 0,292.
Всего выбрать троих дежурных из десяти человек можно столькими первым дежурным может быть любой из десяти человек, вторым - любой из девяти оставшихся, третий - любой из восьми, но так как порядок не имеет значения, нужно еще разделить на 3*2*1, количество перестановок из трех человек, что считается по аналогии):
Теперь подсчитаем количество в которых все дежурные - женщины (это тоже самое, что и выбрать трех человек из семи):
Следовательно, вероятность равна:
Если округлить это число до тысячных, то получится 0,292.
Відповідь:(2cos2x+sinx–2)√5tgx=0
ОДЗ 5tgx > =0
(2cos2x+sinx–2)√5tgx=0
1ый корень √5tgx=0 = > x=πn
2cos2x+sinx–2 = 0
2(1–sin2x)+sinx–2 = 0
2–2sin2x+sinx–2 = 0
–2sin2x+sinx = 0
2sin2x–sinx = 0
sinx(2sinx–1) = 0
sinx = 0
2ой корень (кстати такой же как и первый)
x=πn
sinx = 1/2
3ий и 4ый корни
x = π/6 + 2πn
x = 5π/6 + 2πn (исключаем по ОДЗ, так как tg(5π/6) = –1/√3)
б) Отбор корней
1) π < = πn < = 5π/2
n=1 – > x = π
n=2 – > x = 2π
2) π < = π/6 + 2π·n < = 5π/2
n=1 – > x = π/6 + 2π = 13π/6
Итого мы отобрали 3 корня π, 2π и 13π/6
а) Pin, Pi/6 + 2Pin б) Pi, 2Pi и 13Pi/6
Пояснення: я не знаю правильно или нет но надеюсь