Уравнение любой прямой, в том числе и касательной это y=ax + b. Осталось только найти чему равны в нашем случае коэффициенты а и b Т. к. касательная параллельная прямой y=4x-5 то отсюда следует что a = 4, ведь если прямые параллельны то у них равные углы наклона.
Осталось найти чему равно b. Для этого нам нужно знать точку касания.
Если мы вспомним о связи производной функции с касательной то сможем записать следующее
(x^2 + 2x)' = 4 посчитем производную, она равна 2х + 2. Приравняем к 4 найдем точку касания. х = 1. Подставляем этот х=1 в нашу функцию получаем y = 3. Итого мы нашли точку касания (1;3). Используя это мы легко находим чему равен коэффициент b в уравнении y = 4x + b
чтобы разность не изменилась, нужно вычитаемое увеличить на 2;
чтобы разность уменьшить, нужно вычитаемое увеличить на заданное число плюс 2; чтобы разность увеличить, нужно вычитаемое уменьшить на заданное число минус 2.
а) 12+2=14 ответ: увеличить на 14;
б) 6-2=4 ответ: уменьшить на 4;
в) 2+2=4 ответ: увеличить на 4;
г) 2-2=0 ответ: оставить как есть;
д) ответ: увеличить на 2;
е) 1-2=-1 ответ: увеличить на 1.
223.2 вычитаемое уменьшили на 8 значит:
чтобы разность не изменилась, нужно уменьшаемое уменьшить на 8;
чтобы разность уменьшить на заданное число, нужно от -8 отнять заданное число
чтобы разность увеличить, нужно к -8 прибавить заданное число
Т. к. касательная параллельная прямой y=4x-5 то отсюда следует что a = 4, ведь если прямые параллельны то у них равные углы наклона.
Осталось найти чему равно b. Для этого нам нужно знать точку касания.
Если мы вспомним о связи производной функции с касательной то сможем записать следующее
(x^2 + 2x)' = 4
посчитем производную, она равна 2х + 2. Приравняем к 4 найдем точку касания. х = 1. Подставляем этот х=1 в нашу функцию получаем y = 3. Итого мы нашли точку касания (1;3).
Используя это мы легко находим чему равен коэффициент b в уравнении y = 4x + b
3 = 4*1 + b . Отсюда b равно - 1;
Итого уравнение касательно y = 4x - 1
223.1 уменьшаемое увеличили на 2 значит:
чтобы разность не изменилась, нужно вычитаемое увеличить на 2;
чтобы разность уменьшить, нужно вычитаемое увеличить на заданное число плюс 2; чтобы разность увеличить, нужно вычитаемое уменьшить на заданное число минус 2.
а) 12+2=14 ответ: увеличить на 14;
б) 6-2=4 ответ: уменьшить на 4;
в) 2+2=4 ответ: увеличить на 4;
г) 2-2=0 ответ: оставить как есть;
д) ответ: увеличить на 2;
е) 1-2=-1 ответ: увеличить на 1.
223.2 вычитаемое уменьшили на 8 значит:
чтобы разность не изменилась, нужно уменьшаемое уменьшить на 8;
чтобы разность уменьшить на заданное число, нужно от -8 отнять заданное число
чтобы разность увеличить, нужно к -8 прибавить заданное число
а) -8+3=-5 ответ: уменьшить на 5;
б) -8-5=-13 ответ: уменьшить на 13;
в) -8+4=-4 ответ: уменьшить на 4;
г) -8-10=-18 ответ: уменьшить на 18;
д) -8+8=0 ответ: оставить как есть;
е) ответ: уменьшить на 8.